Studies of Azetidin-2-one as a Reactive Enolate Synthon of β-Alanine for Condensations with Aldehydes and Ketones

David R. Williams, ${ }^{* \dagger}$ Andrew F. Donnell, David C. Kammler, Sarah A. Ward, and Levin Taylor, IV
Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States

(S) Supporting Information

Abstract

Studies describe formation of the lithium enolate of N -(4-methoxybenzyloxy)azetidin-2-one (1) and characterization of representative aldol reactions with aldehydes and ketones. Diastereoselectivity features the production of anti-aldol adducts from α, β unsaturated ketones and α-branched aliphatic aldehydes. The stereoselectivity is rationalized via closed, six-membered transition- state arrangements leading to the formation of Felkin-Anh and antiFelkin products. Examples illustrate the direct incorporation of monocyclic β-lactams into a variety of molecular architectures. The utility of $\mathbf{1}$ as an enolate synthon of homoglycine (β-alanine) is illustrated by the efficient synthesis of novel β-amino acid derivatives, including complex 4 -hydroxy-2-pyridinones.

- INTRODUCTION

Small ring heterocycles have been widely utilized as reactive intermediates for the synthesis of complex heterocyclic systems. Azetidin-2-ones (β-lactams) are especially significant as an essential motif in penicillin and cephalosporin antibiotics. Recent methodology toward the synthesis of β-lactams has impressively advanced the Staudinger reaction of ketenes with various N-substituted imines for the preparation of 3,4disubstituted and 4-monosubstituted examples. ${ }^{1,2}$ In this manner, catalytic processes have been devised for the production of β-lactams with cis- and trans-diastereoselectivity as well as high enantioselectivity. ${ }^{3}$ However, these advances have not proven useful for the synthesis of 3 -monosubstituted 2 -azetidinones. Methods that feature the preparation of related azetidines as reactive species have also recently received attention, ${ }^{4}$ and studies for the selective ring opening of the β lactam have been reported. ${ }^{5}$ The reactivity of azetidin-2-one provides for the design of peptidomimetics via the incorporation of a homoglycine (β-alanine) subunit within the amido backbone. For these examples, the introduction of substitution at the α-carbon (3-position) of the β-lactam ring can prove useful for the design of unnatural β-aminoamides as isosteric bioactive equivalents. In the course of our investigations leading to the total synthesis of apiosporamide, ${ }^{6}$ we have explored the aldol reactions of N -(4-methoxybenzyloxy)azetidin-2-one (1) as an effective general strategy for the synthesis of complex, nonracemic 4 -hydroxy-2-pyridinones as exemplified by 2 and related natural products (eq 1). ${ }^{7}$ Herein, we describe a full

account of our investigations of aldol reactions of $\mathbf{1}$ and describe the contributing factors leading to the observed stereoselectivity of these processes.

These studies have demonstrated a kinetic enolization of 1 and the reactivity of the resulting lithium enolate with a selection of aldehydes and ketones. Our efforts present a method for the direct incorporation of the intact β-lactam into complex molecular architectures which may serve as probes of biological targets.

RESULTS AND DISCUSSION

Studies of aldol reactions involving azetidin-2-one substrates have been associated, in large measure, with installation of the hydroxyethyl side chain of thienamycin and related penem derivatives. ${ }^{8,9}$ The condensation of the enolate of 3 with acetaldehyde yields the adducts $\mathbf{4 a - d}$ (Scheme 1). Chirality at C-4 of the starting azetidinone 3 determines the C-3 stereochemistry ($\mathbf{4 a b} / \mathbf{4 c d}$ ratio $89: 9$), whereas only modest asymmetric induction is observed for introduction of chirality at the site of the secondary alcohol ($\mathbf{4 a} / \mathbf{4 b}$ ratio 50:39). In related reports of acyclic systems, a stereoselective C-alkylation of the lithium enolate, derived from the deprotonation of methyl 3aminobutyrate, has been shown to produce anti-stereoselectivity. ${ }^{10}$

Our initial attempts to explore kinetic enolate formation of the parent azetidin-2-one examined several standard choices for nitrogen protection, and these derivatives failed to provide solutions of enolates consistent with stable, albeit reactive, species. Based on literature reports by Miller and co-workers ${ }^{11}$ regarding the preparation and bioactivity of N -alkoxyazetidin-2ones, we have found that the presence of the $\mathrm{N}-\mathrm{O}$ bond in the

[^0]
Scheme 1. Aldol Reaction of 3 with Acetaldehyde

hydroxamic acid PMB (p-methoxybenzyl) derivative $\mathbf{1}$ leads to useful solutions of highly reactive enolates at $-78{ }^{\circ} \mathrm{C}$. The azetidin-2-one 1 is obtained by adapting the report of Reinhoudt ${ }^{12}$ for intramolecular N-alkylation of 4-(4-methox-ybenzyloxy)-3-chloropropionamide 5 using sodium hydride in DMF at $60^{\circ} \mathrm{C}$ (eq 2). Small amounts of the acrylamide $\mathbf{6}$ are

occasionally observed in the reaction, but the desired β-lactam 1 is readily purified by flash chromatography and stored under anhydrous conditions as a crystalline solid ($\mathrm{mp} 46-47{ }^{\circ} \mathrm{C}$). Studies for the kinetic deprotonation of 1 have measured deuterium incorporation to quantify enolate formation by the integration of the α-hydrogen signal in ${ }^{1} \mathrm{H}$ NMR spectra following the methanol- d_{4} quench. As summarized in Table 1,

Table 1. Deprotonation Studies of 1

1
1a

| entry | base | equiv | time (h) | temp $\left({ }^{\circ} \mathrm{C}\right)$ | \% d-incorporation |
| :---: | :--- | :--- | :---: | :---: | :---: | :---: |
| 1 | LDA | 1.1 | 1 | -78 | 69 |
| 2 | LiHMDS | 1.1 | 1 | -78 | 90 |
| 3 | NaHMDS | 1.1 | 1 | -78 | 79 |
| 4 | KHMDS | 1.1 | 1 | -78 | 12 |
| 5 | NaHMDS | 1.5 | 1 | -78 | 83 |
| 6 | NaHMDS | 1.1 | 1.3 | -78 to 0 | dec |
| 7 | LiHMDS | 1.1 | 2 | -78 | 100 |
| 8 | LiHMDS | 0.93 | 2.2 | -78 to -40 | dec |

the choice of the base is significant for achieving complete deprotonation as LDA has proven to be less effective than LiHMDS (entries 1 and 2), whereas LiHMDS is superior to the use of the corresponding NaHMDS and KHMDS bases. ${ }^{13}$ Notably, solutions of enolate show evidence of decomposition as temperatures are increased from -78 to $-40{ }^{\circ} \mathrm{C}$ or above (entries 6 and 8).

By employing our optimized conditions, the enolate of 1 affords a facile condensation with the nonracemic enone 7 to
produce nearly equal amounts of the anti-diastereomers 8 and 9 in 95% yield (eq 3). No products resulting from 1,4-conjugate

addition are observed. Fortunately, the chromatographic separation of these diastereomers provides suitable crystals leading to simple derivatives of each alcohol for unambiguous assignments of stereochemistry via X-ray crystallographic analysis. ${ }^{14}$

Our mechanistic rationale of this aldol reaction considers four closed transition states as illustrated in Figure 1. The anti-

Figure 1. Zimmerman-Traxler arrangements leading to anti- and synaldol products of $\mathbf{1}$.
products 8 and 9 arise via the Zimmerman-Traxler arrangements of $\mathbf{1 0}$ and 11 , respectively, whereas 12 and 13 lead to the unobserved syn-adducts 14 and 15 . Unfavorable steric interactions of the C-4 methylene of the enolate of 1 with the saturated methylene carbons of the starting cyclohexenone are destabilizing in $\mathbf{1 2}$ and $\mathbf{1 3}$. This condition is remedied by the presence of the planar $\mathrm{C}=\mathrm{C}$ moiety in both 10 and 11 , and
a slight preference for formation of $\mathbf{8}$ is attributed to axial addition to the cyclohexenone carbonyl versus equatorial addition as featured in $\mathbf{1 1}$.

The total synthesis of (+)-apiosporamide has utilized anti-8, ${ }^{6}$ and further studies have sought reaction conditions to maximize the production of the desired diastereomer. The addition of 1 equiv of HMPA or 12-crown-4 into solutions of the lithium enolate, followed by reactions with enone 7 , result in a slight increase in the formation of 8 (dr 1.4:1). However, attempts to generate a boron enolate by the direct treatment of 1 with $n-\mathrm{Bu}_{2} \mathrm{BOTf}$ and $\mathrm{Et}_{3} \mathrm{~N}$ or by the transmetalation of the lithium enolate upon the addition of $n-\mathrm{Bu}_{2} \mathrm{BOTf}$ or 9 -BBNOTf have led to the recovery of starting materials. The literature describes an example of an aldol-competent boron enolate derived from the C-4-substituted N-silyl β-lactam 16 (eq 4). ${ }^{15}$

Deprotonation with LDA at low temperature is followed by addition of 9 -BBNOTf with warming to $-20^{\circ} \mathrm{C}$. Subsequent introduction of acetaldehyde yields 17 (80\%). Unfortunately, in our studies, the recovery of starting $\mathbf{1}$ is observed by application of these conditions. ${ }^{16}$

We have also investigated the use of Lewis acids for precomplexation of enone 7 as a means to modulate the outcome of our key aldol reaction. In fact, chiral Lewis acids would incorporate an additional element of stereocontrol for access to the desired facial selectivity. For these experiments, a concentrated solution of enone 7 and Lewis acid is premixed at $-78^{\circ} \mathrm{C}$, and this solution is then transferred via cannula into a
cold solution of the lithium enolate of $\mathbf{1}$. Unoptimized results are summarized in Table 2 and feature a facile aldol condensation with minimal changes in stereoselectivity. Furthermore, the use of chiral Lewis acids (entries 5-8) indicates a slight increase in the preference for the antidiastereomer 8 irrespective of the chirality of the Lewis acid. This behavior suggests small improvements in the reaction profile for axial versus equatorial addition, while elements of asymmetry in the Lewis acid do not affect the facial selectivity.

We have subsequently surveyed the scope of the aldol reaction using the lithium enolate of N -(4-methoxybenzyloxy)-azetidin-2-one (1) in reactions with a variety of aldehydes and ketones. A compilation of examples is shown in Table 3 based upon the application of the previous reaction conditions to afford 8 and 9 .
Upon complete deprotonation of $\mathbf{1}$ using LiHMDS at -78 ${ }^{\circ} \mathrm{C}$ in THF, the reactive enolate provides for a rapid condensation upon introduction of the carbonyl substrate. Nucleophilic additions generally proceed in good to excellent yields. In these products, a significant pathway for decomposition is available through nucleophilic opening of the β lactam ring. Thus, it is important to quench these aldol reactions with a pH 7 buffer and to avoid prolonged reaction times since initially formed alkoxides, particularly those derived from starting aldehydes, can lead to O-acylation via intermolecular reactions at $-78{ }^{\circ} \mathrm{C}$. To achieve successful aldol reactions, anhydrous conditions are required and the starting β-lactam 1 should be free of impurities. We have noted that samples of $\mathbf{1}$, which are stored for 7 days, often contain small amounts of impurities. The use of these samples without repurification leads to poor outcomes or failed reaction attempts. Our conditions have used a slight excess of the enolate of $\mathbf{1}$, and the carbonyl substrate is generally consumed within 30 min at $-78{ }^{\circ} \mathrm{C}$. No evidence is observed for

Table 2. Aldol Reactions Using Precomplexed Ketone 7

 1		OPMB
entry	Lewis acid	8:9 ratio
1	EtAlCl 2	57:43
2	$\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$	55:45
3	$\mathrm{MgBr}_{2} \bullet \mathrm{OEt}_{2}$	57:43
4	$\mathrm{Ti}(\mathrm{O}-i-\mathrm{Pr})_{4}$	59:41
5	$\mathrm{Ti}(\mathrm{O}-i-\mathrm{Pr})_{4} /(S)-\mathrm{BINOL}(2$ equiv $)$	75:25
6	$\mathrm{Ti}(\mathrm{O}-i-\mathrm{Pr})_{4} /(R)-\mathrm{BINOL}(2$ equiv)	67:33
7		66:34
8		68:32

Table 3. Survey of Aldol Reactions of 1

	 1	LiHMDS, THF, $-78^{\circ} \mathrm{C}$ then		 19	
entry	substrate	major product ${ }^{a}$	yield $(\%)^{b}$	dr ratio c (antisyn) (anti:syn)	ratio of anti-isomers ${ }^{d}$
1	 20		82	100:0	>96:4
2	 22		97	94:6	n.a.
3			86	95:5	n.a.
4		 27	72	75:25	n.a.
5			85	81:19	94:6
6	 30	 31	94	>96:4	75:25
7	 32		80	>96:4	58:42
8			81	80:20	65:35
9			80	>96:4	53:47
10			90	70:30	n.a.
11		 41	93	80:20	n.a.
12			93	83:17	n.a.
13	 44		80	88:12	n.a.
14			87	89:11	n.a.

[^1]competing processes of deprotonation that lead to the reisolation of starting material, as might be anticipated in the case of 3-methylcyclopentenone 26. Likewise, epimerization is not observed in the reactions of aldehydes 28, 30, 32, 34, and 36. The aldol reaction of the enolate of 1 with aldehydes leads to the anti-products with good to excellent stereoselectivity for substrates that display increasing steric hindrance as a result of α-substitution (entries 2-9). In some cases, the corresponding $s y n$-adducts are found as minor products. The assignment of relative stereochemistry is determined by an analysis of vicinal ${ }^{1} \mathrm{H}$ coupling constants. Isomers with the anti-stereochemistry show large $\left(J_{\mathrm{H} 3}-J_{\mathrm{H} 5}\right)$ coupling in the range of $6-9 \mathrm{~Hz}$ compared to small coupling constants ($J_{\mathrm{H} 3}-J_{\mathrm{HS}}$ of $1-4 \mathrm{~Hz}$) for the corresponding syn-diastereomers. ${ }^{17}$ Thus, ratios of anti- to syn-diastereomers, derived from aldehyde substrates, can often be determined by an integration of selected ${ }^{1} \mathrm{H}$ NMR signals of samples of aldol product mixtures. In all cases, major products are fully characterized following initial chromatography leading to isolation of the mixture of aldol adducts and repurification via flash (silica gel) chromatography. Attempts for preparative HPLC separations of diastereomers have displayed evidence of decomposition, which is not encountered in the flash chromatography efforts. Our studies of chiral, nonracemic aldehydes provide β-lactams with modest levels of asymmetric induction as a result of substrate control (Table 3, entries 5-9). For the products of representative examples (entries 7 and 8), the chirality of the secondary alcohol is confirmed via the Mosher ester analysis, ${ }^{18}$ and closely related products (entries 6 and 9) were recognized by the similarities of features and coupling constants in the analysis of their proton NMR spectra. In the case of tertiary alcohol 21 (entry 1), additional information is obtained upon treatment with N -bromosuccinimide (NBS) in THF at $22^{\circ} \mathrm{C}$ (eq 5). Cyclization proceeds to

afford the bromide 48 as a single diastereomer in 73% yield, establishing the cis-stereochemistry of the starting alcohol and the isopropenyl substituent in 21. NOESY studies have led to the assignment of the newly established stereogenic carbon by the observed crosspeak for the indicated hydrogens shown in 48. The anti-stereochemistry of the major product 27 from ketone 26 (entry 4) is assumed by analogy to similarities with related products 8, 9, and 21.

We have considered these results through the evolution of Felkin-Anh and anti-Felkin arrangements, which lead to diastereomeric transition states. Thus, the major adduct 33 ($\mathrm{dr} 58: 42$) in entry 7 (Table 3) is rationalized by the FelkinAnh model 49 (Figure 2), whereas its accompanying minor diastereomer 33a is produced from the anti-Felkin arrangement 50, which is modified by a $\mathrm{C}-\mathrm{C}$ bond rotation to avoid the synpentane interaction with the C-4 methylene of the enolate. For the minimal energetic costs imposed by the $\mathrm{C}-\mathrm{C}$ rotation in 50, the anti-Felkin product is achieved with comparable steric effects as found in 49. Similarly, the presence of α-benzyloxy substitution in nonracemic aldehyde 34 provides major adducts as predicted via the polar Felkin model 51 as well as the competing anti-Felkin 52 with a minimization of steric interactions (Figure 2). The competing aldol reactions,

Figure 2. Considerations of asymmetric induction for reactions of α substituted aldehydes with 1.
described by $\mathbf{5 1}$ and 52, lead to the production of the major product 35 as well as the alternative anti-isomer 35 a (dr 65:35 for the anti-isomers).

The extent to which syn-aldol adducts are formed in certain cases was not anticipated. Our studies have found that aromatic and heteroaromatic aldehydes and straight-chain aliphatic aldehydes usually indicate the production of syn-diastereomers, comprising as much as $12-25 \%$ of the observed product mixture (Table 3, entries 10-14). We speculate that synproducts may arise from a closed boatlike transition state (TS) 53 or from a competing periplanar open transition state 54 as illustrated for the formation of syn-41a (Scheme 2). The open TS arrangement 54 orients the aldehydic hydrogen over the β lactam ring to minimize steric interactions. This may explain the absence of syn-adducts in the aldol reactions of $\mathbf{1}$ with many ketones. In addition, the presence of α-branching in aldehyde substrates increases the effective steric bulk of R , which may

Scheme 2. Open Transition-State Arrangements

destabilize 54 relative to the closed TS arrangements due to nonbonded interactions with the lithium enolate.

The enolate methodology of β-lactam 1 offers a valuable technique for providing access to the preparation of unique β alanine (homoglycine) derivatives. By ring opening, these aldol products lead to an efficient synthesis of a variety of β-amino esters. Illustrations are shown in Scheme 3 using simple

Scheme 3. Transformations of Selected Azetidin-2-ones to Esters and Amides

alcohols such as methanol and allyl alcohol to generate 55, 56, and 57, respectively. The formation of methyl esters from 29 and 43 (examples 1 and 2 , Scheme 3) are readily accomplished using methanol and potassium carbonate to achieve high yields of the respective esters without the need for protection of the secondary alcohol. Products 55 and 56 present an available amino function for further acylation. Example 3 (Scheme 3) demonstrates mild conditions for the incorporation of an alkoxide leading to the allyl ester $\mathbf{5 7}$. We have also documented the N-acylation required for the synthesis of peptidomimetic substances as shown in the reaction of 29 to yield 58 via the incorporation of the tert-butyl ester of L-alanine. This directly provides an available β-amino group in 58 for further elaboration.

A significant goal of our studies sought to utilize our azetidin2 -ones for the preparation of β-amido esters as key intermediates for the construction of highly substituted 4-hydroxy-2-pyridinones. In fact, simple dihydropyridin-2-one derivatives have been obtained via the one-pot N-acylation of N-(4-methoxybenzyloxy)amine 57 upon treatment with diketene in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ followed by an intramolecular Claisen condensation in the presence of 4 -(dimethylamino)pyridine (DMAP). This general concept is demonstrated in Scheme 4 for the synthesis of the complex 4-hydroxy-2-pyridinone 62. In this case, the allyl ester $\mathbf{5 7}$ leads to amide $\mathbf{6 0}$ via N-acylation using the nonracemic carboxylic acid 59^{6} and benzotriazol-1yloxytris(dimethylamino) phosphonium hexafluorophosphate (BOP). ${ }^{19}$ Deprotection of the allyl ester provides an unstable carboxylic acid 61^{20} for acyl activation (BOP, DBU), allowing for the ring closure to proceed at $-20^{\circ} \mathrm{C}$. Subsequently, a mild oxidation with BrCCl_{3} affords the 5 -substituted 2-pyridinone

Scheme 4. Use of 1 in the Synthesis of 4-Hydroxy-2-pyridinones

62. ${ }^{21,22}$ Our example shows that N-acylations are feasible using the standard conditions that are compatible with demanding strategies for synthesis of peptidomimetics via these experiments.

CONCLUSION

In conclusion, our investigations have described aldol reactions using the reactive lithium enolate derived from N -(4-methoxybenzyloxy)-2-acetidinone (1) at $-78{ }^{\circ} \mathrm{C}$. Facile condensations with α, β-unsaturated enones and α-branched aldehydes produce good to excellent yields of 3 -substituted 2azetidinones. We have postulated that these reactions proceed via closed, six-membered transition states leading to antidiastereoselection. Major adducts stemming from chiral, nonracemic α-substituted aldehydes feature three contiguous stereocenters corresponding to Felkin-Anh and anti-Felkin addition products. Unbranched aliphatic and aromatic or heteroaromatic aldehydes provide high yields of aldol products as mixtures of anti- and syn-diastereomers. Finally, we have illustrated opportunities for applications of these reactive β lactams for the synthesis of complex substances containing Clinked β-amino acid derivatives, and further transformations produce C-5 substituted 4-hydroxypyridin-2-ones. The aldol products derived from 1 may prove useful for the synthesis of novel peptidomimetics or C-linked glycopeptides via the incorporation of an unnatural β-alanine subunit. In this manner, the azetidinone $\mathbf{1}$ serves as a valuable β-homoglycine equivalent that allows for an efficient assembly of molecular complexity.

EXPERIMENTAL SECTION

General Methods. All reactions were conducted in flame- or ovendried glassware under an atmosphere of argon unless otherwise noted. All reagents and solvents were reagent grade and used as received with the following exceptions: Bulk grade hexanes and ethyl acetate (EtOAc) were distilled before use. Diethyl ether ($\mathrm{Et}_{2} \mathrm{O}$), tetrahydrofuran (THF), dimethylformamide (DMF), toluene, acetonitrile, and dichloromethane were degassed and passed through activated alumina columns in a commercial solvent purification system. Triethylamine ($\mathrm{Et}_{3} \mathrm{~N}$), and pyridine were distilled from CaH_{2} under dry air immediately before use. Allyl alcohol was distilled from magnesium turnings under Ar. Bromotrichloromethane $\left(\mathrm{BrCCl}_{3}\right)$ was distilled from CaH_{2} under Ar. 1,8-Diazabicyclo[5.4.0] undec-7-ene (DBU) and triethylsilyl trifluoromethanesulfonate (TESOTf) were distilled from CaH_{2} under vacuum and stored under Ar. Dimethyl sulfoxide (DMSO) was distilled from CaH_{2} under vacuum and stored over $4 \AA$ molecular sieves under Ar. 1,1,3,3-Tetramethylguanidine (TMG) was distilled from BaO under Ar. Tetrakis(triphenylphosphine)palladium $(0)\left[\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\right]$ was washed with
degassed ethanol and degassed ether and then dried in vacuo overnight in the absence of light. ${ }^{23}$ Commercial solutions of n butyllithium ($n-\mathrm{BuLi}$) were titrated with menthol in THF using $2,2^{\prime}$ bipyridine as an indicator. Commercial solutions of lithium $1,1,3,3-$ hexamethyldisilazane (LiHMDS) were titrated according to the method of Ireland. ${ }^{24}$ Dess-Martin periodinane (DMP) was prepared according to the literature procedure. ${ }^{25}$ In addition to those defined above, the following reagents are referred to by their abbreviations: dicyclohexylcarbodiimide (DCC), 4-dimethylaminopyridine (DMAP), benzotriazol-1-yloxytris(dimethylamino)phosphonium hexafluorophosphate (BOP), and tetra- n-butylammonium fluoride (TBAF).

Reactions were monitored by analytical TLC using glass-backed 0.25 mm thickness silica gel $60\left(\mathrm{~F}_{254}\right)$ plates, which were visualized under UV light and/or by staining with ethanolic p-anisaldehyde. Preparative TLC was performed on 0.5 mm thickness $20 \mathrm{~cm} \times 20 \mathrm{~cm}$ glass-backed silica gel $60\left(\mathrm{~F}_{254}\right)$ plates. Flash chromatography was performed using silica gel 60 ($230-400$ mesh ASTM). Amounts of silica used are reported as volume (mL) of SiO_{2}. The sample was loaded as a solution in the minimum amount of the mobile phase, unless otherwise noted, and pressure was obtained using an airline bleed. Solvents were removed by rotary evaporation under aspirator vacuum, and all nonvolatile samples were dried under high vacuum $(0.1-0.2 \mathrm{mmHg})$ at rt .

Melting points were determined using a capillary melting point apparatus and are uncorrected. Optical rotations were obtained on a polarimeter at 589 nm (sodium d line) using a 10 cm path length and a 1.0 mL volume. Concentrations (c) are given in $\mathrm{g} / 100 \mathrm{~mL}$ in the specified solvent. Infrared spectra are reported in wavenumbers $\left(\mathrm{cm}^{-1}\right)$. Oils were analyzed as films on sodium chloride plates; solids were analyzed on a diamond plate (ATR) or as films on sodium chloride plates. Proton and carbon nuclear magnetic resonance (${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR) spectra were measured on 400 or 500 MHz spectrometers. The spectra were acquired as solutions in deuterated chloroform $\left(\mathrm{CDCl}_{3}\right)$, methanol $\left(\mathrm{CD}_{3} \mathrm{OD}\right)$, or acetone $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right)$ and are reported in parts per million (δ, ppm) downfield using residual nondeuterated solvent as an internal standard set to $\delta 7.26,3.23$, and 2.05 for ${ }^{1} \mathrm{H}$ NMR and $\delta 77.16,49.00$, and 29.84 for ${ }^{13} \mathrm{C}$ NMR, respectively. ${ }^{1} \mathrm{H}$ NMR data are reported in the following format: chemical shift (multiplicity, coupling constants, number of protons). Multiplicities are recorded by the following abbreviations: s, singlet; d , doublet; t , triplet; q, quartet; m , multiplet; br, broad. Mass spectral data (MS and HRMS) were recorded by use of EI, FAB, or electrospray ionization (ESI) with time-of-flight (TOF) analyzer. Data are reported in the form m / z (relative intensity).
N-(4-Methoxybenzyloxy)azetidin-2-one (1). N-(4Methoxybenzyloxy) amine ($4.225 \mathrm{~g}, 27.58 \mathrm{mmol}, 1$ equiv) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(92 \mathrm{~mL}, 0.3 \mathrm{M})$ and cooled to $0^{\circ} \mathrm{C}$, and pyridine ($2.35 \mathrm{~mL}, 29.05 \mathrm{mmol}, 1.06$ equiv) was added rapidly. To this clear, colorless solution was added 3-chloropropionyl chloride (2.80 $\mathrm{mL}, 29.3 \mathrm{mmol}, 1.06$ equiv) dropwise over 5 min . A white precipitate rapidly appeared and then gradually disappeared before addition was complete, leaving a clear yellow solution. The cooling bath was
removed, and the reaction was allowed to warm to rt over 15 min . The reaction was diluted with pentane $(200 \mathrm{~mL})$, causing precipitation of a white solid. The yellow-white suspension was washed with water $(1 \times$ $50 \mathrm{~mL})$ and then $1 \mathrm{M} \mathrm{HCl}(1 \times 10 \mathrm{~mL})$, and the combined aqueous washes were extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \times 50 \mathrm{~mL})$. The combined organic layers were washed with saturated aqueous $\mathrm{NaHCO}_{3}(1 \times 25$ $\mathrm{mL})$ and saturated aqueous $\mathrm{NaCl}(1 \times 25 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo to give a cream-colored solid. The crude material was purified by flash chromatography using diethyl ether to yield a thick oil. This oil was redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and an equal volume of $\mathrm{Et}_{2} \mathrm{O}$ was added and then carefully concentrated in vacuo to precipitate 6.355 g (95%) of N-(4-methoxybenzyloxy)amide in a $2: 1$ mixture of amide rotamers as a fluffy white solid. This material could be recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexanes, albeit in slightly reduced yields to give white crystals: mp $80-81{ }^{\circ} \mathrm{C} ; R_{f} 0.1$ [hexanes/EtOAc (2:1)]; IR (ATR) 3209 (br), 3031, 2952, 1653, 1607, 1515, 1238, 1033, 1014, $823 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.04(\mathrm{~s}, \mathrm{br}$, $0.67 \mathrm{H}), 7.82(\mathrm{~s}, \mathrm{br}, 0.33 \mathrm{H}), 7.27-7.38(\mathrm{~m}, \mathrm{br} 2 \mathrm{H}), 6.88-6.96(\mathrm{~m}$, $2 \mathrm{H}), 4.88(\mathrm{~s}, 1.33 \mathrm{H}), 4.77(\mathrm{~s}, \mathrm{br}, 0.67 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, \mathrm{br}$, 2H), 2.82 (s, br, 0.67 H), 2.49 (s, br 1.33 H) ; ${ }^{13} \mathrm{C}$ NMR (101 MHz , $\mathrm{CDCl}_{3} \delta 173.5,167.3,160.2,159.9,131.0,127.1,126.1,114.0,113.8$, 79.1, 77.8, 77.2, 55.2, 39.7, 38.5, 36.2, 34.6, 29.6; MS (FAB, NBA, Na^{+}) 244 (100), 209 (60), 195 (43), 151 (28), 137 (69); HRMS m/e $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{ClNO}_{3}$ 244.0741, found 244.0744. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{ClNO}_{3}$: C, 54.22; H, 5.79; N, 5.75. Found: C, 54.17; H, 5.77; N, 5.68.

Sodium hydride (0.174 g of 60% dispersion in mineral oil, 4.36 $\mathrm{mmol}, 1.05$ equiv) was slurried in DMF $(1.4 \mathrm{~mL})$ and cooled to $0^{\circ} \mathrm{C}$. A solution of the amide described above ($1.01 \mathrm{~g}, 1$ equiv) in DMF (4.0 mL) was added dropwise over 10 min with vigorous stirring. The reaction was stirred at $0^{\circ} \mathrm{C}$ for 20 min , the cooling bath was removed, and the reaction was allowed to warm to rt over 10 min , during which time the suspension became a clear pale yellow solution. The reaction was then immersed in a preheated $60^{\circ} \mathrm{C}$ oil bath and heated for 1 h , during which time it became an opaque yellow suspension. Reaction progress was monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy (400 MHz , CDCl_{3}), and samples were prepared by filtration of a small aliquot through SiO_{2} (1:1 hexanes/EtOAc) followed by concentration. The reaction was cooled to rt and then loaded directly onto a plug of silica, using small quantities of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to aid transfer $\left(100 \% \mathrm{Et}_{2} \mathrm{O}\right)$. Following concentration, the wet, impure product was stirred under high vacuum for 4 h to remove residual DMF, resulting in a thick yellow oil. The crude material was purified by flash silica gel chromatography $\left(100 \% \mathrm{Et}_{2} \mathrm{O}\right)$ to yield 0.506 g of a mixture of the desired β-lactam (1) containing small amounts of N-(4methoxybenzyloxy)acrylamide (ratio 12:1). This viscous oil was purified by flash chromatography using diethyl ether, which led to crystallization of pure 1 upon concentration of the combined fractions as white needles ($475 \mathrm{mg}, 53 \%$ yield): $\mathrm{mp} 46-47{ }^{\circ} \mathrm{C}$; $R_{f} 0.33$ [hexanes/EtOAc (1:1)], 0.45 ($100 \% \mathrm{Et}_{2} \mathrm{O}$); IR (neat) 3076, 3041, 3002, 2967, 1763, 1610, 1586, 1512, 1247, $1035 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3} \delta \mathrm{AB}\left(\delta_{\mathrm{A}}=7.32, \delta_{\mathrm{B}}=6.89, J_{\mathrm{AB}}=8.7 \mathrm{~Hz}, 4 \mathrm{H}\right), 4.86(\mathrm{~s}$, $2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.21(\mathrm{t}, J=4.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.61(\mathrm{t}, J=4.2 \mathrm{~Hz}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 164.4,160.1,130.7,127.2,113.9,77.3$, 55.2, 44.9, 31.9; MS (CI/ CH_{4}) 208 (1), 135 (19), 122 (45), 121 (100), 91 (27), 78 (33), 77 (39); HRMS $m / e[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{NO}_{3}$ 208.0974, found 208.0970. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NO}_{3}$: C, 63.76; H, 6.32; N, 6.76. Found: C, 63.42; H, 6.32; N, 6.76.
(R)-3-[(1S,4S)-4-(tert-Butyldimethylsilanoxy)-1-hydroxycyclohex-2-enyl]-1-(4-methoxybenzyloxy)azetidin-2-one (8) and (S)-3-[(1R,4S)-4-(tert-Butyldimethylsilanoxy)-1-hydroxycyclohex-2-enyl]-1-(4-methoxybenzyloxy)azetidin-2-one (9). To a $-78{ }^{\circ} \mathrm{C}$ solution of β-lactam $1(6.76 \mathrm{~g}, 32.6 \mathrm{mmol})$ in THF $(326 \mathrm{~mL})$ was added LiHMDS (27.4 mL of a 1.0 M solution in THF, 31.0 mmol) dropwise. The clear, yellow solution was stirred at $-78{ }^{\circ} \mathrm{C}$ for 2 h , and then a solution of ketone $7(3.51 \mathrm{~g}, 15.5 \mathrm{mmol})^{6}$ in THF $(26 \mathrm{~mL})$ was added dropwise. The reaction was stirred at $-78{ }^{\circ} \mathrm{C}$ for 30 min , and then it was quenched by the addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(200 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 200 \mathrm{~mL})$. The combined organic layers were washed with saturated aqueous $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$ and
saturated aqueous $\mathrm{NaCl}(100 \mathrm{~mL})$, dried over MgSO_{4}, filtered, and concentrated in vacuo to a yellow solid. NMR indicated a 1.2:1.0 ratio of 8:9. The crude material was purified by flash chromatography (1 L $\left.\mathrm{SiO}_{2}, 9: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}\right)$ to provide alcohol $8(3.55 \mathrm{~g}, 51 \%)$ and alcohol 9 ($2.94 \mathrm{~g}, 44 \%$), both as white solids.

For characterization of the major diastereomer 8: mp 112-113 ${ }^{\circ} \mathrm{C}$; $R_{f} 0.28$ [hexanes/EtOAc (1.5:1)], $0.2\left[\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}(9: 1)\right] ;[\alpha]_{\mathrm{D}}^{22}$ $-9.10\left(c 0.714, \mathrm{CHCl}_{3}\right)$; IR (film) 3420 (br), 3070, 2945, 2853, 1745, 1620, 1515, 1251, 1040, 875, 829, $776 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.34\left(\mathrm{~A}\right.$ of $\left.\mathrm{AB}, J_{\mathrm{AB}}=7.34 \mathrm{~Hz}, 2 \mathrm{H}\right), 6.89\left(\mathrm{~B}\right.$ of $\mathrm{AB}, J_{\mathrm{BA}}=8.6$ $\mathrm{Hz}, 2 \mathrm{H}), 5.74(\mathrm{dd}, J=10.2,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.39(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.87\left(\mathrm{~A}\right.$ of $\left.\mathrm{AB}, J_{\mathrm{AB}}=11.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.87\left(\mathrm{~B}\right.$ of $\left.\mathrm{AB}, J_{\mathrm{BA}}=11.4 \mathrm{~Hz}, 1 \mathrm{H}\right)$, 4.19 (dddd, $J=8.3,3.3,3.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.33(\mathrm{dd}, J=$ $4.3,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{dd}, J=5.4,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.07(\mathrm{dd}, J=5.4,2.6$ $\mathrm{Hz}, 1 \mathrm{H}), 2.21$ (ddd, $J=13.1,7.9,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.06$ (br s, 1H), 1.96 (dddd, $J=13.0,7.8,4.9,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.71$ (ddd, $J=13.6,10.7,2.9 \mathrm{~Hz}$, $1 \mathrm{H}), 1.52$ (dddd, $J=13.4,10.2,7.0,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.06$ (s, $3 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.2,160.1$, $134.7,130.9,130.0,127.2,113.9,77.5,69.0,65.8,55.2,52.9,47.4,32.4$, 29.6, 25.8, 18.1, -4.6, -4.7; MS (CI) 416 (1), 376 (14), 122 (37), 121 (100), 73 (17); HRMS (EI) $m / z[\mathrm{M}-\mathrm{OH}]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{NO}_{4} \mathrm{Si}$ 416.2257, found 416.2251. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{35} \mathrm{NO}_{5} \mathrm{Si}: \mathrm{C}, 63.71$; H, 8.14; N, 3.23. Found: C, 63.83; H, 8.17; N, 3.22.

For characterization of the minor diastereomer 9: mp 73-75 ${ }^{\circ} \mathrm{C} ; R_{f}$ 0.25 [hexanes/EtOAc (1.5:1)], $0.1\left(9: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}\right) ;[\alpha]_{\mathrm{D}}^{22}-27.9$ (c 0.562, CHCl_{3}); IR (film) 3440 (br), 2932, 2846, 1759, 1614, 1581, 1508, 1258, 1093, 869, 829, $770 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.34\left(\mathrm{~A}\right.$ of $\left.\mathrm{AB}, J_{\mathrm{AB}}=8.5 \mathrm{~Hz}, 2 \mathrm{H}\right), 6.89\left(\mathrm{~B}\right.$ of $\left.\mathrm{AB}, J_{\mathrm{BA}}=8.5 \mathrm{~Hz}, 2 \mathrm{H}\right)$, $5.77(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.41(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.87\left(\mathrm{~A}\right.$ of $\mathrm{AB}, J_{\mathrm{AB}}$ $=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.87\left(\mathrm{~B}\right.$ of $\left.\mathrm{AB}, J_{\mathrm{BA}}=11.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.12($ dddd, $J=$ $8.5,6.0,2.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.26-3.19(\mathrm{~m}, 2 \mathrm{H}), 2.95$ (dd, J $=5.1,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.05(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.02-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.86-1.77(\mathrm{~m}$, $1 \mathrm{H}), 1.71$ (dddd, $J=12.4,12.4,9.0,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.58$ (ddd, $J=13.0$, $13.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.07(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 163.9,160.1,136.8,130.9,129.1,127.2,113.9,77.5,67.9$, 67.2, 55.2, 53.9, 47.3, 32.0, 28.4, 25.8, 18.1, -4.6, -4.8; MS (CI) 416 (1), 197 (44), 122 (40), 121 (100), 105 (40), 75 (62), 73 (30); HRMS (EI) $m / z[M-O H]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{NO}_{4} \mathrm{Si} 416.2257$, found 416.2262. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{35} \mathrm{NO}_{5} \mathrm{Si}: \mathrm{C}, 63.71 ; \mathrm{H}, 8.14 ; \mathrm{N}, 3.23$. Found: C, 63.86; H, 8.19; N, 3.22.

General Procedure for Aldol Reactions of Table 3 Using $\boldsymbol{\beta}$ Lactam 1. To a $-78{ }^{\circ} \mathrm{C}$ solution of β-lactam 1 (1.6 equiv) in THF (0.1 M) was added LiHMDS (2.0 equiv of a 1.0 M solution in THF) dropwise over 5 min . The clear, yellow solution was stirred at $-78^{\circ} \mathrm{C}$ for 2 h . Ketone or aldehyde substrate (1.0 equiv) was then added dropwise. The reaction was stirred at $-78{ }^{\circ} \mathrm{C}$ for $15-30 \mathrm{~min}$ or disappearance of the starting material by TLC. Reactions were quenched by the addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ or by pH 7 aqueous buffer and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were washed with saturated aqueous NaHCO_{3} and saturated aqueous NaCl , dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. Ratios were determined by the integration of selected ${ }^{1} \mathrm{H}$ NMR signals of the crude mixture of isomeric products, which were then purified by silica gel flash chromatography leading to spectroscopic characterizations of the major product diastereomers.
(S)-3-((1S,5R)-1-Hydroxy-2-methyl-5-(prop-1-en-2-yl)cyclohex-2-en-1-yl)-1-((4-methoxybenzyl)oxy)azetidin-2-one (21) (Table 3, Entry 1). By application of the general procedure for the low temperature generation of the enolate of $1(520 \mathrm{mg}, 2.5 \mathrm{mmol})$, the reaction of (R)-carvone ($180 \mathrm{mg}, 1.2 \mathrm{mmol}$) in THF ($25 \mathrm{~mL} ; 0.1 \mathrm{M}$) gave the product lactam 21 as a colorless oil ($385 \mathrm{mg}, 90 \%$), characterized a single diastereomer: $R_{f} 0.78$ [hexanes/EtOAc (6:4)]; $[\alpha]_{\mathrm{D}}^{20}-51.0\left(c 0.70, \mathrm{CDCl}_{3}\right)$; $\operatorname{IR}($ film $) 3436,3130,2924,1760,1613$, $1515,1252,1176,1034,821,459 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.32(\mathrm{~d}, J=8.2, \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.53-5.46(\mathrm{~m}$, $1 \mathrm{H}), 4.85(\mathrm{q}, J=11.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.73(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H})$, $3.49(\mathrm{dd}, J=4.3,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.25(\mathrm{dd}, J=5.5,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{dd}$, $J=5.5,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{dt}, J=12.6,2.2,1 \mathrm{H}), 2.24(\mathrm{dt}, J=15.1,10.4$ $\mathrm{Hz}, 1 \mathrm{H}), 2.12-2.05(\mathrm{~m}, 2 \mathrm{H}), 1.94$ (ddt, $J=17.9,10.4,2.2 \mathrm{~Hz}, 1 \mathrm{H})$, $1.72(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
$\delta 165.1,160.1,148.3,135.7,130.8,127.3,125.8,113.9,109.6,77.5$, $72.6,55.3,52.7,48.3,40.6,38.5,30.8,20.8,17.8$; HRMS (ESI-TOF) $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{NO}_{4} \mathrm{Na} 380.1838$, found 380.1837.

3-(1-Hydroxy-2-methylpropyl)-1-(4-methoxybenzyloxy)azetidin-2-one (23) (Table 3, Entry 2). Following the general procedure for the low temperature generation of the enolate of $\mathbf{1}(132 \mathrm{mg} ; 0.64 \mathrm{mmol})$, the aldehyde $22(36.3 \mu \mathrm{~L}, 0.40 \mathrm{mmol})$ was introduced into the reaction at $-78{ }^{\circ} \mathrm{C}$. After being stirred for 30 min , the reaction was quenched by the addition of aqueous $\mathrm{NH}_{4} \mathrm{Cl}(6 \mathrm{~mL})$ and extracted with ether $(2 \times 15 \mathrm{~mL})$. Combined organic extracts were washed with aqueous NaHCO_{3} and then aqueous, saturated NaCl , dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated in vacuo to a thick oil. Flash silica gel chromatography using 40% EtOAc in hexanes afforded the crude product ($109 \mathrm{mg}, 0.39 \mathrm{mmol} 97 \%$ yield), which proved to be principally one diastereomer ($\mathrm{dr} 94: 6$). Further purification by flash chromatography using $25 \% \mathrm{EtOAc}$ in hexanes provided a pure sample of 23. For characterization of the anti-diastereomer 23: $R_{f} 0.24$ [hexanes/EtOAc (6:4)]; IR (film) 3470, 2962, 1756, 1612, 1515, 1253, 1033, 822, $559 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34$ (d, J $=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.91(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.89\left(\mathrm{~A}\right.$ of $\mathrm{AB}, J_{\mathrm{AB}}=11.2 \mathrm{~Hz}$, $1 \mathrm{H}), 4.86\left(\mathrm{~B}\right.$ of $\left.\mathrm{AB}, J_{\mathrm{BA}}=11.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.45(\mathrm{td}, J=6.7$, $3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{t}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{dd}, J=4.7,2.5 \mathrm{~Hz}, 1 \mathrm{H})$, 3.00 (ddd, $J=7.5,5.3,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.81-$ $1.68(\mathrm{~m}, 1 \mathrm{H}), 0.92(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.9,160.2,130.9,127.2,114.0,77.5$, 75.6, 55.3, 48.9, 47.9, 33.1, 18.6, 17.8; HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}[\mathrm{M}+$ $\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{Na}$ 302.1368, found 302.1376 .

3-[Cyclohexyl(hydroxy)methyl]-1-(4-methoxybenzyloxy)azetidin-2-one (25) (Table 3, Entry 3). The aldol adduct 25 was prepared according to the general procedure for formation of the enolate from 1 ($132 \mathrm{mg}, 0.64 \mathrm{mmol}$) via introduction of aldehyde $24(48.1 \mu \mathrm{~L}, 0.40$ mmol) into the reaction at $-78{ }^{\circ} \mathrm{C}$. Flash chromatography $[E t O A c /$ hexanes (4:6)] resulted in a pure sample of 25 from the crude product mixture (86%, $95: 5$ ratio of anti-syn isomers). Flash chromatography of this product gave a sample of the pure diastereomer 25: $R_{f} 0.44$ [hexanes/EtOAc (6:4)]; IR (film) 3478, 2928, 1744, 1612, 1516, 1252, 856, $550 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33(\mathrm{~d}, J=8.6$ $\mathrm{Hz}, 2 \mathrm{H}), 6.89(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.87\left(\mathrm{~A}\right.$ of $\left.\mathrm{AB}, J_{\mathrm{AB}}=11.3 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $4.85\left(\mathrm{~B}\right.$ of $\left.\mathrm{AB}, J_{\mathrm{BA}}=11.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.45(\mathrm{t}, J=6.7 \mathrm{~Hz}$, $1 \mathrm{H}), 3.26(\mathrm{t}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{dd}, J=4.6,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.00$ (ddd, $J=7.5,5.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 1 \mathrm{H}), 1.85(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.72$ $(\mathrm{m}, 2 \mathrm{H}), 1.64(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.57(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.48-$ $1.38(\mathrm{~m}, 1 \mathrm{H}), 1.27-1.04(\mathrm{~m}, 3 \mathrm{H}), 1.04-0.87(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.0,160.2,130.9,127.2,114.0,77.5,74.9$, 55.3, 54.1, 48.9, 47.8, 42.8, 28.8, 28.4, 26.3, 26.0, 25.8; HRMS (ESITOF) $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{NO}_{4} \mathrm{Na} 342.1681$, found 342.1666.
(S)-3-((R)-1-Hydroxy-3-methylcyclopent-2-en-1-yl)-1-((4-methoxybenzyl)oxy)azetidin-2-one (27) (Table 3, Entry 4). Following the general procedure for the low temperature generation of the enolate of β-lactam $1(124 \mathrm{mg} ; 0.60 \mathrm{mmol})$, the ketone $26(28 \mathrm{mg}$, 0.29 mmol) was introduced into the reaction at $-78^{\circ} \mathrm{C}$. After being stirred for 30 min , the reaction was quenched by the addition of aqueous $\mathrm{NH}_{4} \mathrm{Cl}(6 \mathrm{~mL})$ and extracted with ether $(2 \times 8 \mathrm{~mL})$. Combined organic extracts were washed with aqueous NaHCO_{3} and then aqueous, saturated NaCl , dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated in vacuo to a thick oil. Flash silica gel chromatography using diethyl ether afforded the crude product ($63 \mathrm{mg}, 72 \%$ yield), which proved to be principally the crude anti-adduct 27 containing small amounts of more polar syn-isomer (approximate dr 75:25). Rechromatography using $\mathrm{Et}_{2} \mathrm{O}$ provided the pure anti-27 (34 mg) which was characterized as follows: $R_{f} 0.40\left[\mathrm{Et}_{2} \mathrm{O} ; 2\right.$ elutions]; IR (film) 3435, 2937, 1757, 1612, 1515, 1252, 1032, $822 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38-7.28(\mathrm{~m}, 2 \mathrm{H}), 6.95-6.84(\mathrm{~m}, 2 \mathrm{H}), 5.20$ $(\mathrm{d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 4 \mathrm{H}), 3.26(\mathrm{t}, J=$ $5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.11(\mathrm{~m}, 2 \mathrm{H}), 2.47-2.38(\mathrm{~m}, 1 \mathrm{H}), 2.26-2.13(\mathrm{~m}, 1 \mathrm{H})$, $2.05(\mathrm{dd}, J=8.8,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.96(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.75(\mathrm{t}, J=1.7$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.7,160.1,147.0,130.8$, 127.3, 127.0, 114.0, 84.4, 77.7, 55.3, 53.2, 48.1, 37.4, 35.3, 16.8; HRMS
(ESI-TOF) $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{O}_{4} \mathrm{NNa} 326.1368$, found 326.1364.

A pure sample of the minor product (3.0 mg) was characterized as the corresponding syn-isomer 27a: $R_{f} 0.45$ [$\mathrm{Et}_{2} \mathrm{O} ; 2$ elutions]; ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38-7.28(\mathrm{~m}, 2 \mathrm{H}), 6.95-6.84(\mathrm{~m}, 2 \mathrm{H})$, $5.42(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.29(\mathrm{t}$, $J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.11(\mathrm{~m}, 2 \mathrm{H}), 2.47-2.38(\mathrm{~m}, 1 \mathrm{H}), 2.26-2.13(\mathrm{~m}$, $1 \mathrm{H}), 2.10-2.07(\mathrm{~m}, 1 \mathrm{H}), 1.97(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.75(\mathrm{t}, J=1.2 \mathrm{~Hz}$, 3 H); small quantities of 27a proved insufficient for ${ }^{13} \mathrm{C}$ NMR analysis; HRMS (ESI-TOF) $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{O}_{4} \mathrm{NNa}$ 326.1368, found 326.1367 .
(R)-3-((S)-((2R,3S,4S)-3-(Benzyloxy)-4-((tert-butyldiphenylsilyl)oxy) tetrahydrofuran-2-yl)(hydroxy)methyl)-1-(4-methoxybenzyloxy)azetidin-2-one (29) (Table 3, Entry 5). Following the general procedure for the low temperature generation of the enolate of 1 ($50 \mathrm{mg}, 0.24 \mathrm{mmol}$), aldehyde $28(69 \mathrm{mg}, 0.15 \mathrm{mmol})$ was introduced into the reaction at $-78{ }^{\circ} \mathrm{C}$. After being stirred for 40 min , the reaction was quenched by the addition of aqueous pH 7 buffer $(10 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 8 \mathrm{~mL})$. Combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated in vacuo to give a thick, colorless oil. An initial flash chromatography using $\mathrm{Et}_{2} \mathrm{O}$ provided three product diastereomers (90 mg ; dr 76:18:7) in approximately 90% yield. Subsequent flash chromatography (10\% EtOAc in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) gave 60 mg of the major product 29 and additional fractions of inseparable mixtures (total 20 mg) that contained the minor anti-adduct together with a small amount of an uncharacterized syn-isomer (ratio 2:1). The major azetidinone anti-29 was characterized as follows: $R_{f} 0.66$ [$\mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1:9)]; IR (film) 3443, 3070, 2933, 1756, 1612, 1515, 1252, 1112, 1076, 823, 735, 702, 614 cm^{-1}; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.70(\mathrm{dt}, J=6.5,1.6 \mathrm{~Hz}, 2 \mathrm{H})$, $7.67-7.60(\mathrm{dt}, J=6.5,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.50-7.37(\mathrm{~m}, 6 \mathrm{H}), 7.34-7.22$ $(\mathrm{m}, 5 \mathrm{H}), 7.07(\mathrm{dd}, J=7.4,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.89-6.82(\mathrm{~m}, 2 \mathrm{H}), 4.85(\mathrm{~d}, J$ $=2.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.31(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{dd}, J=8.1,3.7 \mathrm{~Hz}, 1 \mathrm{H})$, $4.06-3.95(\mathrm{~m}, 4 \mathrm{H}), 3.90(\mathrm{dd}, J=9.5,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s} 3 \mathrm{H}), 3.74$ $(\mathrm{dd}, J=9.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.28(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.14(\mathrm{dt}, J=6.2,4.0$ $\mathrm{Hz}, 1 \mathrm{H}), 2.71(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.07(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 165.0,160.1,137.6,135.9,135.7,133.2,130.9,130.1,130.0$, 128.4, 127.9, 127.9, 127.8, 127.5, 127.3, 113.9, 84.8, 81.6, 77.5, 75.9, 74.3, 71.6. 68.1, 55.2 48.5, 48.4, 26.9, 19.0; HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}[\mathrm{M}$ $+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{39} \mathrm{H}_{45} \mathrm{NO}_{7} \mathrm{NaSi} 690.2863$, found 690.2871 .
(S)-3-((1S,2R,3S)-3-((Benzyloxy)methoxy)-1-hydroxy-2-methylbu-tyl)-1-((4-methoxybenzyl)oxy)azetidin-2-one (31) (Table 3, Entry 6). Following the general procedure for the low temperature generation of the enolate of β-lactam $1(50 \mathrm{mg}, 0.24 \mathrm{mmol})$, the aldehyde 30 (33 $\mathrm{mg}, 0.15 \mathrm{mmol}$) was introduced into the reaction at $-78^{\circ} \mathrm{C}$. After being stirred for 40 min , the reaction was quenched by the addition of aqueous $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$ and extracted with ether $(2 \times 8 \mathrm{~mL})$. Combined organic extracts were washed with aqueous NaHCO_{3} and then aqueous, saturated NaCl , dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated in vacuo to a viscous oil. Flash silica gel chromatography using $\mathrm{Et}_{2} \mathrm{O}$ provided two anti-products (61 mg ; dr $75: 25$) in 94% yield. These two diastereomeric adducts were separated via flash chromatography using $\mathrm{Et}_{2} \mathrm{O}$ leading to the isolation of the major component (37 mg), which was characterized as the anti-isomer 31: R_{f} 0.40 [$\mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3:7)]; IR (film) 3475, 2930, 1759, 1612, 1514, 1252, $1036 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.29-7.13(\mathrm{~m}, 7 \mathrm{H})$, 6.83-6.76 (m, 2H), $4.78(\mathrm{~s}, 2 \mathrm{H}), 4.71(\mathrm{~d} J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{~d}, J=$ $7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{~s}, 2 \mathrm{H}), 4.03(\mathrm{dt}, J=5.6,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~m}, 4 \mathrm{H})$, $3.16(\mathrm{q}, J=3.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.94-2.90(\mathrm{~m}, 1 \mathrm{H}), 2.80(\mathrm{~d}, J=3.6 \mathrm{~Hz}$. $1 \mathrm{H}), 1.35(\mathrm{pd}, J=7.1,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.12(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.84(\mathrm{~d}, J$ $=7.1 \mathrm{~Hz} .3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.7,160.1,137.6$, 130.9, 128.5, 127.8, 127.8, 127.3, 114.0, 93.8, 77.5, 76.5, 69.9, 69.8, 57.2, 55.2, 48.5, 43.0, 18.5, 10.4; HRMS (ESI-TOF) $m / z[\mathrm{M}+\mathrm{Na}]^{+}$ calcd for $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{NO}_{6} \mathrm{Na} 452.2049$, found 452.2033.
(S)-3-[(1S,2R)-3-(tert-Butyldiphenylsilanoxy)-1-hydroxy-2-methyl-propyl]-1-(4-methoxybenzyloxy)azetidin-2-one (33) and (R)-3-[(1R,2R)-3-(tert-Butyldiphenylsilanoxy)-1-hydroxy-2-methylpropyl]-1-(4-methoxybenzyloxy)azetidin-2-one (33a) (Table 3, Entry 7). Following the general procedure for the low temperature generation of the enolate of β-lactam $\mathbf{1}(124 \mathrm{mg}, 0.60 \mathrm{mmol})$, the aldehyde 32 (130
$\mathrm{mg}, 0.40 \mathrm{mmol}$) was introduced into the reaction at $-78{ }^{\circ} \mathrm{C}$. After being stirred for 30 min , the reaction was quenched by the addition of aqueous $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$ and extracted with ether $(2 \times 10 \mathrm{~mL})$. The combined organic extracts were washed with aqueous NaHCO_{3} and then saturated aqueous NaCl , dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated in vacuo to a viscous oil. Flash silica gel chromatography using 50% EtOAc in hexanes provided two products $(178 \mathrm{mg}$, dr $58: 42$) as diastereomers in 80% yield, which were separated via flash chromatography ($30 \% \mathrm{EtOAc}$ in hexanes). The more polar, major product (95 mg) was characterized as the anti-isomer 33: $R_{f} 0.18$ [hexanes/EtOAc (7:3)]; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.68-7.63$ (m, 4 H$), 7.47-7.27(\mathrm{~m}, 8 \mathrm{H}), 6.89(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.88(\mathrm{~s}, 2 \mathrm{H})$, $3.98(\mathrm{dt}, J=7.6,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.70\left(\mathrm{~A}\right.$ of $\mathrm{ABX}, J_{\mathrm{AB}}=10.3$ $\left.\mathrm{Hz}, J_{\mathrm{AX}}=6.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.63\left(\mathrm{~B}\right.$ of $\mathrm{ABX}, J_{\mathrm{BA}}=10.3 \mathrm{~Hz}, J_{\mathrm{BX}}=4.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.24(\mathrm{t}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.08-3.02(\mathrm{~m}, 2 \mathrm{H}), 2.78(\mathrm{~d}, J=4.0 \mathrm{~Hz}$, $1 \mathrm{H}), 1.75-1.66(\mathrm{~m}, 1 \mathrm{H}), 1.05(\mathrm{~s}, 9 \mathrm{H}), 0.91(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.7,160.1,135.6,133.1,130.9,129.8$, 127.7, 127.3, 114.0, 77.5, 71.8, 68.2, 66.6, 55.3, 48.5, 39.6, 26.9, 19.2, 10.9; HRMS (ESI-TOF) $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{31} \mathrm{H}_{40} \mathrm{NO}_{5} \mathrm{Si}$ 534.2676, found 534.2695 .

The minor product (75 mg) was characterized anti-adduct 33a: R_{f} 0.22 [hexanes/EtOAc (7:3)]; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.69-$ $7.64(\mathrm{~m}, 4 \mathrm{H}), 7.47-7.32(\mathrm{~m}, 8 \mathrm{H}), 6.89(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.90(\mathrm{~s}$, $2 \mathrm{H}), 3.92(\mathrm{t}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.80-3.72(\mathrm{~m}, 2 \mathrm{H}), 3.59$ (dd, $J=10.1,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{dd}, J=4.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.25(\mathrm{t}, J=$ $4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{td}, J=5.0,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.23-2.14(\mathrm{~m}, 1 \mathrm{H}), 1.05$ $(\mathrm{s}, 9 \mathrm{H}), 0.80(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 165.7, 160.1, 135.5, 133.4, 130.9, 129.8, 127.7, 127.3, 114.0, 77.5, 71.8, 66.6, 58.5, 55.3, 48.3, 39.6, 26.9, 19.2, 10.9; HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{31} \mathrm{H}_{40} \mathrm{NO}_{5} \mathrm{Si}(\mathrm{M}+\mathrm{H})^{+}$534.2676, found 534.2682. The absolute stereochemistry of the secondary alcohol in 33 and 33a was determined using the modified Mosher analysis ${ }^{18 a}$ of each isomer, which identified the stereotriad present in these anti-adducts. The Mosher analyses are summarized in the Supporting Information.
(S)-3-[(1S,2R)-2-(Benzyloxy)-1-hydroxypropyl]-1-(4methoxybenzyloxy) azetidin-2-one (35) and (R)-3-[(1S,2S)-2-(benz-yloxy)-1-hydroxypropyl]-1-(4-methoxybenzyloxy)azetidin-2-one (35a) (Table 3, Entry 8). The aldol adducts 35 and 35a were prepared according to the general procedure ($81 \%, 80: 20$ anti-syn, anti-ratio dr 65:35 for 35:35a). Major diastereomer 35 was difficult to separate from an inseparable mixture $s y n$-isomers and an unidentified impurity. After repeated purifications by flash chromatography, a sample of 35 was obtained for characterization: $R_{f} 0.42\left[\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}\right.$ (9:1)]; IR (film) 3440 (br), 3041, 2962, 1755, 1610, $1035 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36-7.25(\mathrm{~m}, 7 \mathrm{H}), 6.90(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.87(\mathrm{~s}$, $2 \mathrm{H}), 4.60\left(\mathrm{~A}\right.$ of $\left.\mathrm{AB}, J_{\mathrm{AB}}=11.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.44\left(\mathrm{~B}\right.$ of $\mathrm{AB}, J_{\mathrm{BA}}=11.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{t}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H})$, $3.27(\mathrm{t}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.22-3.19(\mathrm{~m}, 1 \mathrm{H}), 3.12(\mathrm{qd}, J=5.2,2.5 \mathrm{~Hz}$, $1 \mathrm{H}), 1.24(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3} \delta 165.4$, 157.2, 138.2, 130.9, 128.5, 128.4, 127.7 (2), 114.0, 77.5, 77.4, 73.7, 71.1, 55.3, 49.0, 47.3, 15.9; HRMS (ESI-TOF) $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NO}_{5} \mathrm{Na} 394.1630$, found 394.1613.

The minor products that are assigned as the syn-diastereomers were inseparable and were not individually characterized. However, the minor anti-diastereomer was less polar and was readily separated by flash chromatography using 10% ether in methylene chloride. The minor anti-isomer 35a was characterized as follows: $R_{f} 0.60\left[\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ $\left.\mathrm{Et}_{2} \mathrm{O}(9: 1)\right] ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37-7.27(\mathrm{~m}, 7 \mathrm{H}), 6.89$ $(\mathrm{d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.88(\mathrm{~s}, 2 \mathrm{H}), 4.64\left(\mathrm{~A}\right.$ of $\left.\mathrm{AB}, J_{\mathrm{AB}}=11.4 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $4.44\left(\mathrm{~B}\right.$ of $\left.\mathrm{AB}, J_{\mathrm{BA}}=11.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.77$ (quintuplet, $J=$ $6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{t}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{dd}, J=4.4,2.5 \mathrm{~Hz}, 1 \mathrm{H})$, $3.22(\mathrm{t}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.04(\mathrm{td}, J=5.2,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $1.21(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H})$; HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NO}_{5} \mathrm{Na} 394.1630$, found 394.1626.
(S)-3-((1R,2S)-2-((tert-Butyldimethylsilyl)oxy)-1-hydroxy-2-phe-nylethyl)-1-((4-methoxybenzyl)oxy)azetidin-2-one (37) (Table 3, Entry 9). Following the general procedure for enolate formation of 1 $(132 \mathrm{mg}, 0.64 \mathrm{mmol})$, the aldehyde $36(93.8 \mathrm{mg}, 0.40 \mathrm{mmol})$ was introduced into the reaction at $-78{ }^{\circ} \mathrm{C}$. After stirring for 30 min , the reaction was quenched by the addition of aqueous pH 7 buffer (5 mL)
and extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 10 \mathrm{~mL})$. The combined organic extracts were washed with saturated, aqueous $\mathrm{NaCl}(10 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated in vacuo to give a viscous oil. An initial flash chromatography using 40% EtOAc in hexanes provided a mixture of two product diastereomers ($\mathrm{dr} 53: 47$) in 80% yield and the recovery of starting β-lactam (1) (45 mg). Subsequent gradient flash chromatography using EtOAc in hexanes (6.6-20\% EtOAc in hexanes by volume) gave the less polar product (65 mg), which was characterized as anti-37: $R_{f} 0.88$ [hexanes/EtOAc (6:4)]; IR (film) 3480, 3034, 2955, 1770, 1613, 1515, 1253, 1062, 837, $780 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.37-7.21(\mathrm{~m}, 7 \mathrm{H}), 6.87(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.83(\mathrm{~d}$, $J=2.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.77(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~m}, 1 \mathrm{H})$, 3.22 (ddd, $J=7.4,5.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.07(\mathrm{dd}, J=5.0,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.62$ (dd, $J=5.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.07$ $(\mathrm{s}, 3 \mathrm{H}),-0.16(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.3,160.1$, 141.1, 130.9, 128.2, 127.9, 127.1, 126.5, 113.9, 77.4, 76.4, 75.4, 55.2, 48.8, 45.6, 25.8, 18.1, -4.8; HRMS (ESI-TOF) $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{35} \mathrm{NO}{ }_{5} \mathrm{Si} 480.2177$, found 480.2164 .

The minor anti-diastereomer 37a was characterized as follows: R_{f} 0.81 [hexanes/EtOAc (6:4)]; IR (film) 3442, 3032, 2955, 1758, 1612, 1515, 1253, 1060, 779, $702 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.37-7.25(\mathrm{~m}, 7 \mathrm{H}), 6.87(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.85(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 2 \mathrm{H})$, $4.77(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{dt}, J=5.9,7.3 \mathrm{~Hz}, 1 \mathrm{H})$, 3.22 (ddd, $J=7.3,5.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.08(\mathrm{t}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.62$ (dd, $J=5.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.21(\mathrm{~s}, 1 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.17(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.3,160.1,141.1,130.9$, 128.3, 127.9, 127.2, 126.6, 113.9, 77.4, 76.4, 75.5, 55.2, 48.8, 45.6, 25.8, 18.1, $-4.8,-4.9$; HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{35} \mathrm{NO}_{5} \mathrm{Si} 480.2177$, found 480.2182 .
(R)-3-((R,E)-1-Hydroxy-3-phenylallyl)-1-((4-methoxybenzyl)oxy)-azetidin-2-one (39) (Table 3, entry 10). Following the general procedure for the low temperature generation of solutions of the enolate of $\mathbf{1}(100 \mathrm{mg}, 0.48 \mathrm{mmol})$ utilizing LiHMDS $(0.45 \mathrm{~mL}$ of $1 \underline{\mathrm{M}}$ solution) in THF, aldehyde $38(40 \mathrm{mg}, 0.30 \mathrm{mmol})$ was introduced into the reaction mixture at $-78^{\circ} \mathrm{C}$. After stirring for 20 min , the reaction was quenched by the addition of aqueous pH 7 buffer $(8 \mathrm{~mL})$, and extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 10 \mathrm{~mL})$. Combined organic extracts were washed with saturated aqueous NaCl , dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo to give a viscous oil. An initial flash chromatography using $20 \% \mathrm{EtOAc}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ provided the mixture of anti- and syn-diastereomers (100 mg ; dr 78:22) in 98% yield. Subsequent flash chromatography [EtOAc/hexanes (1:5)] afforded pure samples leading to isolation and characterization of the major product as anti-39: $R_{f} 0.45\left[\mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ (1:5)]; IR (film) 3414, 2962, 1754, 1612, 1514, 1252, 1032, $750 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.41-7.23(\mathrm{~m}, 7 \mathrm{H}), 6.89-6.85(\mathrm{~m}, 2 \mathrm{H}), 6.63-6.56(\mathrm{~d}, J=$ $15.9,1 \mathrm{H}), 6.23(\mathrm{dd}, J=15.9,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{~s}, 2 \mathrm{H}), 4.49(\mathrm{td}, J=$ $6.9,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.28(\mathrm{t}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.17-3.10(\mathrm{~m}$, $2 \mathrm{H}), 2.24(\mathrm{~d}, \mathrm{~J}=3.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.6$, 160.2, 135.9, 132.5, 130.9, 128.6, 128.2, 127.7, 127.2, 126.7, 114.0, 77.7, 71.3, 55.3, 50.2, 47.9; HRMS (ESI-TOF) $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{Na} 362.1368$, found 362.1353.

For characterization of the minor product as syn-39a: $R_{f} 0.50$ [EtOAc/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1:5)]; IR (film) 3411, 2963, 1755, 1612, 1514, 1252, 1032, $696 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40-7.28(\mathrm{~m}$, $5 \mathrm{H}), 7.32-7.21(\mathrm{~m}, 2 \mathrm{H}), 6.92-6.83(\mathrm{~m}, 2 \mathrm{H}) .6 .63(\mathrm{dd}, J=15.9,1.4$ $\mathrm{Hz}, 1 \mathrm{H}), 6.16(\mathrm{dd}, J=15.9,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.89(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.67$ $(\mathrm{m}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.38(\mathrm{dd}, J=4.6,2.5 \mathrm{~Hz}, 1 \mathrm{H}) .3 .27(\mathrm{dd}, J=4.5$, $5.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.12 (ddd, $J=5.2,4.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.08-2.01 (m, 1H); ${ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 164.1, 160.2, 136.0. 131.4, 130.9. 128.6, 128.2, 128.0, 127.2, 126.6, 114.0, 77.6, 68.8, 55.3, 50.6, 47.0; HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{Na} 362.1368$, found 362.1361 .

3-[Hydroxy(phenyl)methyl]-1-(4-methoxybenzyloxy)azetidin-2one (41) (Table 3, entry 11). Following the general procedure for low temperature generation of the enolate from $1(133 \mathrm{mg}, 0.64 \mathrm{mmol})$, benzaldehyde ($41 \mu \mathrm{~L}, 0.40 \mathrm{mmol}$) was introduced into the reaction at $-78{ }^{\circ} \mathrm{C}$. After stirring for 30 min , the reaction was quenched by the addition of aqueous $\mathrm{NH}_{4} \mathrm{Cl}(6 \mathrm{~mL})$ and extracted with ether $(2 \times 15$ $\mathrm{mL})$. Combined organic extracts were washed with aqueous NaHCO_{3},
then aqueous, saturated NaCl , dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo to a thick oil. Flash silica gel chromatography using 30% EtOAc in hexanes afforded the crude product (117 mg , 93% yield) which proved to be a mixture of two diastereomers (dr 80:20). The major product $41(89 \mathrm{mg})$ was obtained as a pure sample following flash chromatography using 35% EtOAc in hexanes, and was characterized by the following data: $R_{f} 0.44$ [hexanes/EtOAc (6:4)]; IR (film) 3410, 3033, 2958, 1755, 1612, 1515, 1252, 1032, $703 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.37-7.27(\mathrm{~m}, 5 \mathrm{H}), 7.21(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.88(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{~A}$ of $\left.\mathrm{AB}, J_{\mathrm{AB}}=11.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.69\left(\mathrm{~B}\right.$ of $\left.\mathrm{AB}, J_{\mathrm{BA}}=11.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.80(\mathrm{~s}$, 3 H), $3.42(\mathrm{~s}, 1 \mathrm{H}), 3.25$ (ddd, $J=6.7,5.2,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.18(\mathrm{t}, J=5.1$ $\mathrm{Hz}, 1 \mathrm{H}), 3.02(\mathrm{dd}, J=4.9,2.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(127 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ δ 164.7, 160.1, 140.6, 130.9, 128.5, 128.2, 127.1, 126.4, 114.0, 77.6, 72.3, 55.3, 51.5, 48.0; HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}_{4} \mathrm{Na} 336.1212$, found 336.1208.

3-[Furan-2-yl(hydroxy)methyl]-1-(4-methoxybenzyloxy)azetidin-2-one (43) (Table 3, entry 12). Following the general procedure for the low temperature generation of the enolate of β-lactam $1(373 \mathrm{mg}$, 1.80 mmol), furfural ($42: 86.9 \mu \mathrm{~L}, 1.00 \mathrm{mmol}$) was introduced into the reaction at $-78{ }^{\circ} \mathrm{C}$. After stirring for 60 min , the reaction was quenched by the addition of aqueous $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$ and extracted with ether $(2 \times 15 \mathrm{~mL})$. Combined organic extracts were washed with aqueous NaHCO_{3}, then aqueous, saturated NaCl , dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo to a thick oil. Flash silica gel chromatography using 50% EtOAc in hexanes afforded the crude product ($281 \mathrm{mg}, 93 \%$ yield) as a mixture of two diastereomers (dr 83:17). Flash chromatography of this mixture $\left[\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ ether (9:1)] led to the isolation of 248 mg (82% of the major product which was determined to be the anti-diastereomer 43 and was fully characterized as follows: $R_{f} 0.22$ [hexanes/EtOAc (1:1)]; IR 3483, 2969, 2900, 1749, 1612, 1515, 1255, $1033 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.34(\mathrm{t}$, $J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H})$, $6.34(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.31(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.87(\mathrm{~d}, J=7.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.82(\mathrm{~s}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.34(\mathrm{ddd}, J=6.9,5.1,2.3 \mathrm{~Hz}, 1 \mathrm{H})$, $3.28(\mathrm{t}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.25(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.15(\mathrm{dd}, J=4.7,2.3 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 164.3,160.2,153.5,142.5,131.0$, 127.1, 114.1, 110.5, 107.5, 77.7, 66.3, 55.4, 49.3, 48.4; MS (FAB) 362 (17), 121 (100), 107 (46); HRMS (ESI-TOF) $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{5} \mathrm{Na}$ 326.1004, found 326.1013.

The minor product (33 mg) was characterized as the syndiastereomer 43a: $R_{f} 0.31$ [hexanes/EtOAc (1:1)]; IR 3403, 2925, 1760, 1612, 1515, 1253, $1031 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.36-7.31(\mathrm{~m}, 3 \mathrm{H}), 6.89(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.31(\mathrm{dd}, J=3.3,1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.23(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{~s}, 1 \mathrm{H}), 4.88\left(\mathrm{~A}\right.$ of $\mathrm{AB}, J_{\mathrm{AB}}=11.1$ $\mathrm{Hz}, 1 \mathrm{H}), 4.86\left(\mathrm{~B}\right.$ of $\left.\mathrm{AB}, J_{\mathrm{BA}}=11.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.61-3.59$ $(\mathrm{m}, 1 \mathrm{H}), 3.32(\mathrm{t}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{dd}, J=4.3,2.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.0,160.2,154.1,142.5,131.1,127.3$, 114.1, 110.4, 107.0, 77.7, 63.5, 55.4, 49.4, 47.1; MS (FAB) 362 (1), 299 (15), 279, (20), 121 (100); HRMS (ESI-TOF) $m / z[\mathrm{M}+\mathrm{Na}]^{+}$ calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{5} \mathrm{Na}$ 326.1004, found 326.1016.

3-(1-Hydroxypropyl)-1-(4-methoxybenzyloxy)azetidin-2-one (45) (Table 3, entry 13). The aldol adducts were prepared according to the general procedure (80%, dr 88:12 anti-syn). Major diastereomer 45: $R_{f} 0.20$ [hexanes/EtOAc (6:4)]; IR (film) 3443, 2958, 1752, 1612, $1515,1253,984,820,536 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.32$ $(\mathrm{d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.89(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.86(\mathrm{~s}, 2 \mathrm{H}), 3.80(\mathrm{~s}$, $3 \mathrm{H}), 3.76-3.71(\mathrm{~m}, 1 \mathrm{H}), 3.26(\mathrm{t}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{dd}, J=4.6,2.5$ $\mathrm{Hz}, 1 \mathrm{H}$), 2.92 (ddd, $J=6.2,5.4,2.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.33 (br s, 1H), $1.61-$ $1.72(\mathrm{~m}, 4 \mathrm{H}), 0.90(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 165.3,160.2,130.9 .127 .2,114,77.5,69.8,55.3,50.3,48.2,37.6,18.6$, 13.8; HRMS (ESI-TOF) $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{Na}$ 302.1368, found 302.1376 .

3-[4-(tert-Butyldimethylsilanoxy)-1-hydroxybutyl]-1-(4methoxybenzyloxy) azetidin-2-one (47) (Table 3, entry 14). Following the general procedure for the low temperature generation of the enolate of $1(132 \mathrm{mg}, 0.64 \mathrm{mmol})$, the aldehyde $46(131 \mathrm{mg}, 0.40$ mmol) was introduced into the reaction at $-78^{\circ} \mathrm{C}$. After stirring for 30 min , the reaction was quenched by the addition of aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ $(6 \mathrm{~mL})$ and extracted with ether $(2 \times 15 \mathrm{~mL})$. Combined organic
extracts were washed with aqueous NaHCO_{3}, then aqueous, saturated NaCl , dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo to a thick oil. Flash silica gel chromatography using EtOAc in hexanes [gradient of $20 \% \mathrm{EtOAc} /$ hexanes to $30 \% \mathrm{EtOAc} /$ hexanes] afforded the crude product ($187 \mathrm{mg}, 87 \%$ yield), which proved to be two diastereomers (dr 89:11). Flash chromatography using 20\% EtOAc in hexanes gave a pure sample of the major adduct (96 mg) which was characterized as anti-47: $R_{f} 0.37$ [hexanes/EtOAc (6:4)]; IR (film) 3426, 2897, 1758, 1515, 1252, 1112, 704, $506 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.66$ $(\mathrm{d}, J=6.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.46-7.32(\mathrm{~m}, 8 \mathrm{H}), 6.90(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.88$ $(\mathrm{s}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{t}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.27(\mathrm{t}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H})$, 3.18 (dd, $J=4.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{td}, J=5.5,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{~d}, J$ $=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.74-1.60(\mathrm{~m}, 4 \mathrm{H}), 1.05(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.1,160.2$ 135.5, 133.4, 130.9, 129.7, 127.7, 127.3, 113.9, 77.5, 69.5, 63.9, 55.3, 50.4, 48.1, 32.2, 28.6, 26.8, 19.1; HRMS (ESI-TOF) $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{31} \mathrm{H}_{39} \mathrm{NO}_{5} \mathrm{SiNa}$ 556.2495, found 556.2506.
(S)-3-((1R,5S,7S)-7-(Bromomethyl)-4,7-dimethyl-6-oxabicyclo-[3.2.1]oct-3-en-5-yl)-1-((4-methoxybenzyl)oxy)azetidin-2-one (48). To a solution of the β-lactam $21(20 \mathrm{mg}, 0.056 \mathrm{mmol})$ in THF $(0.6$ mL) was added N-bromosuccinimide ($15 \mathrm{mg}, 0.084 \mathrm{mmol}, 1.5$ equiv). After 1 h the reaction mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 1 \mathrm{~mL})$. The combined organic layer was washed with saturated aqueous NaHSO_{3}, brine, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. Purification by chromatography on silica gel ($40 \% \mathrm{EtOAc}$ in hexanes) furnished bromide 48 as a white solid ($18 \mathrm{mg}, 73 \%$ yield): $R_{f} 0.70$ [hexanes/EtOAc (6:4)]; IR (film) 3070, 2933, 1730, 1513, 1249, 1111, $703 \mathrm{~cm}^{-1}$; $[\alpha]_{\mathrm{D}}^{20}+13.2\left(c 0.60, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.41-7.28(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.94-6.82(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $2 \mathrm{H}), 5.32(\mathrm{~s}, 1 \mathrm{H}), 4.95-4.80(\mathrm{~m}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.43(\mathrm{~d}, J=10.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.34(\mathrm{~m}, 3 \mathrm{H}), 3.20(\mathrm{dd}, J=5.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{dd}, J=$ $11.1,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.47(\mathrm{~d}, J=19.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H})$, 2.34-2.24 (d, $J=19.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.81(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.60$ (s , $3 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 164.0, 160.1, 140.1, 130.9, 127.4, 123.2, 113.9, 85.3, 80.3, 77.5, 55.2, 48.7, 48.5, 41.4, 38.3, 36.0, 29.6, 26.0, 18.8; HRMS (ESI-TOF) $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{BrNNaO}_{4} 458.0937$, found 458.0927 (M) and 460.0906 (M +2 bromine isotope).

Methyl-(2R,3S)-3-((2R,3S,4S)-3-(benzyloxy)-4-((tert-butyldiphenylsilyl)oxy)tetrahydrofuran-2-yl)-3-hydroxy-2-((()4methoxybenzyl)oxy)amino)methyl)propanoate (55). A reaction vial is charged with β-lactam $29(29 \mathrm{mg}, 0.043 \mathrm{mmol})$ in methanol $(1 \mathrm{~mL})$, and $\mathrm{K}_{2} \mathrm{CO}_{3}(9 \mathrm{mg})$ is added. The suspension is stirred at $22^{\circ} \mathrm{C}$ for 30 min, and then is concentrated under reduced pressure. The crude product is applied to a pipet column of silica gel and eluted with 10% EtOAc in methylene chloride. After removal of solvents in vacuo, the desired methyl ester $55(28 \mathrm{mg}, 93 \%$ yield $)$ is isolated as a clear oil: R_{f} 0.60 [$\mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1:9)]; IR (film) 3420, 2931, 2857, 1712, 1649, $1248,1111 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.70-7.60(\mathrm{~m}, 4 \mathrm{H})$, $7.49-7.36(\mathrm{~m}, 6 \mathrm{H}), 7.29-7.20(\mathrm{~m}, 5 \mathrm{H}), 7.10(\mathrm{~m}, 2 \mathrm{H}), 6.83(\mathrm{~d}, J=8.6$ $\mathrm{Hz}, 2 \mathrm{H}), 5.91(\mathrm{~s}, 1 \mathrm{H}), 4.60(\mathrm{~s}, 2 \mathrm{H}), 4.34-4.29(\mathrm{~m}, 1 \mathrm{H}), 4.15(\mathrm{~m}, 2 \mathrm{H})$, $4.07(\mathrm{q}, J=11.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.93(\mathrm{dd}, J=9.4,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~d}, J=$ $2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 4 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.44(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.34$ (dd, $J=6.3,4.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.18(\mathrm{td}, J=6.3,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.07(\mathrm{~s}, 9 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.5,159.3,137.9,135.8,135.7$, 133.3, 133.2, 130.1, 130.1, 130.0, 129.7, 128.3, 127.9, 127.8, 127.6, 127.3, 113.7, 84.4, 81.1, 76.0, 75.7, 74.4, 71.9, 69.7, 55.2, 52.3, 51.7, 45.8, 26.9, 19.1; HRMS (ESI-TOF) $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{40} \mathrm{H}_{50} \mathrm{NO}_{8} \mathrm{Si} 700.3306$, found 700.3320 .

Methyl-(2R,3S)-3-(furan-2-yl)-3-hydroxy-2-(4methoxybenzyloxy)aminomethylpropanoate (56). A flask is charged with β-lactam $43(36 \mathrm{mg}, 0.119 \mathrm{mmol})$ in methanol $(1.2 \mathrm{~mL})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(25 \mathrm{mg}, 0.179 \mathrm{mmol})$ is added. The suspension is stirred at 22 ${ }^{\circ} \mathrm{C}$ for 30 min , and then is diluted with water $(8 \mathrm{~mL})$. After extraction with ether $(3 \times 5 \mathrm{~mL})$, the combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. Upon flash silica gel chromatography (hexanes/EtOAc, 1:1 by volume), the desired methyl ester $56(35 \mathrm{mg})$ is isolated as a white solid (87% yield) which was characterized as follows: $R_{f} 0.55$
[hexanes/EtOAc (1:1)]; IR (film) 3504, 3277, 3148, 1730, 1513, $1248,1174,1032 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36$ (dd, $J=$ $1.8,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.19(\mathrm{~m}, 2 \mathrm{H}), 6.92-6.80(\mathrm{~m}, 2 \mathrm{H}), 6.32(\mathrm{dd}, J$ $=3.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.26(\mathrm{dt}, J=3.3,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.66(\mathrm{~s}, \mathrm{NH}, 1 \mathrm{H})$, $5.00(\mathrm{~d} J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~s}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.30$ $(\mathrm{dt}, J=6.9,5.9 \mathrm{~Hz} .1 \mathrm{H}), 3.22(\mathrm{dd}, J=13.3,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.14(\mathrm{dd}, J=$ 13.3, $5.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.16-3.09 (m, OH, 1H); ${ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}) $\delta 173.7,159.3,154.0,142.1,130.0,129.3,113.6,110.1,107.0$, 75.7, 67.6, 55.1, 51.9, 51.0, 48.0; HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{Na}]^{+}$ calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{6} \mathrm{Na} 358.1261$, found 358.1259 .

Allyl (S)-2-[(1R,4S)-4-(tert-butyldimethylsilanoxy)-1-(triethylsila-noxy)-cyclohex-2-enyl]-3-(4-methoxybenzyloxyamino)propionate (57). To a $0^{\circ} \mathrm{C}$ solution of the β-lactam $9(679 \mathrm{mg}, 1.57 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(16 \mathrm{~mL})$ was added pyridine ($190 \mu \mathrm{~L}, 2.35 \mathrm{mmol}$) dropwise, followed by TESOTf ($425 \mu \mathrm{~L}, 1.88 \mathrm{mmol}$) dropwise. The clear, colorless solution was stirred at $0{ }^{\circ} \mathrm{C}$ for 5 min , becoming cloudy white, then it was stirred at rt for 10 min . The reaction was diluted with pentane (32 mL) and $\mathrm{H}_{2} \mathrm{O}(16 \mathrm{~mL})$ and stirred vigorously until all of the solids dissolved. The layers were separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$. The combined organic layers were washed with saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and saturated aqueous $\mathrm{NaCl}(10 \mathrm{~mL})$, dried over MgSO_{4}, filtered, and concentrated in vacuo, removing traces of pyridine under high vacuum. The crude material was purified by flash chromatography [hexanes/ EtOAc (6:1)] to provide the TES silyl ether of $9(822 \mathrm{mg}, 96 \%)$ as a white solid: mp $79.5-81.5^{\circ} \mathrm{C} ; R_{f} 0.68$ [hexanes/EtOAc (1.5:1)]; $[\alpha]_{\mathrm{D}}^{22}$ -89 (c 0.51, CHCl_{3}); IR 3056, 3031, 2943, 1758, 1610, 1581, 1512, $1252,1060,976,839,775 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 7.33 (A of AB, $\left.J_{\mathrm{AB}}=8.6 \mathrm{~Hz}, 2 \mathrm{H}\right), 6.89\left(\mathrm{~B}\right.$ of AB, $\left.J_{\mathrm{BA}}=8.6 \mathrm{~Hz}, 2 \mathrm{H}\right), 5.66(\mathrm{dd}, J$ $=10.1,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.43(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.90\left(\mathrm{~A}\right.$ of $\mathrm{AB}, J_{\mathrm{AB}}=$ $11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.83\left(\mathrm{~B}\right.$ of $\left.\mathrm{AB}, J_{\mathrm{AB}}=11.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.05(\mathrm{q}, J=4.1 \mathrm{~Hz}$, $1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.42(\mathrm{dd}, J=3.9,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.17(\mathrm{dd}, J=5.4,4.2$ $\mathrm{Hz}, 1 \mathrm{H}), 2.94(\mathrm{dd}, J=5.3,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.2-2.0(\mathrm{~m}, 2 \mathrm{H}), 1.78-1.64$ $(\mathrm{m}, 2 \mathrm{H}), 0.93(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.68-0.52(\mathrm{~m}, 6 \mathrm{H})$, $0.05(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.0$, $160.0,133.2,131.8,130.6,127.5,113.9,77.3,71.0,64.1,55.2,53.5$, 46.8, 29.3, 29.1, 25.7, 18.0, 7.0, 6.5, -4.7, -4.8; MS (CI) 547 (1), 518 (88), 490 (5), 341 (21), 237 (20), 209 (52), 161 (40), 121 (100), 73 (22); HRMS (EI) $m / z[\mathrm{M}]^{+}$calcd for $\mathrm{C}_{29} \mathrm{H}_{49} \mathrm{NO}_{5} \mathrm{Si}_{2} 547.3149$, found 547.3152; Anal. Calcd for $\mathrm{C}_{29} \mathrm{H}_{49} \mathrm{NO}_{5} \mathrm{Si}_{2} \mathrm{C}$ 63.57; H, 9.01 ; N, 2.56. Found: C, 63.73; H, 9.11; N, 2.77.

To a $-78^{\circ} \mathrm{C}$ slurry of the TES silyl ether of $9(4.48 \mathrm{~g}, 8.17 \mathrm{mmol})$ in allyl alcohol (82 mL) was added n-BuLi (32.7 mL of a 2.5 M solution in hexanes, 81.7 mmol) dropwise over 45 min . The reaction was warmed to rt over 30 min , becoming a clear, colorless solution, and stirred at rt for 2 h , becoming cloudy yellow. The reaction was diluted with $\mathrm{Et}_{2} \mathrm{O}(320 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(160 \mathrm{~mL})$ and stirred vigorously until all of the solids dissolved. The layers were separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(160 \mathrm{~mL})$. The combined organic layers were washed with saturated aqueous $\mathrm{NaCl}(160 \mathrm{~mL})$, dried over MgSO_{4}, filtered, and concentrated in vacuo, removing remaining traces of allyl alcohol under high vacuum. The crude material was purified by flash chromatography [hexanes/EtOAc (9:1)] to provide ester 57 ($4.06 \mathrm{~g}, 82 \%$) as a colorless, viscous oil. $R_{f} 0.53$ [hexanes/EtOAc (3:1)]; $[\alpha]_{\mathrm{D}}^{22}-24.2\left(c 1.71, \mathrm{CHCl}_{3}\right)$; IR (film) 3277 (br), 3090, 3031, 2958, 1733, 1650, 1620, 1586, 1507, 1252, 1089, 1040, 873, 839, 775 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.25\left(\mathrm{~A}\right.$ of $\mathrm{AB}, J_{\mathrm{AB}}=8.7 \mathrm{~Hz}$, $2 \mathrm{H}), 6.86\left(\mathrm{~B}\right.$ of $\left.\mathrm{AB}, J_{\mathrm{BA}}=8.7 \mathrm{~Hz}, 2 \mathrm{H}\right), 5.87(\mathrm{ddt}, J=17.2,10.5,5.8$ $\mathrm{Hz}, 1 \mathrm{H}), 5.70\left(\mathrm{~A}\right.$ of $\mathrm{ABXY}, J_{\mathrm{AB}}=10.2 \mathrm{~Hz}, J_{\mathrm{AX}}=1.2 \mathrm{~Hz}, J_{\mathrm{AY}}=1.2 \mathrm{~Hz}$, 1 H), 5.66 (B of ABXY, $J_{\mathrm{BA}}=10.2 \mathrm{~Hz}, J_{\mathrm{BX}}=2.0 \mathrm{~Hz}, J_{\mathrm{BY}}=0.7 \mathrm{~Hz}, 1 \mathrm{H}$), $5.61(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}), 5.31$ (ddt, $J=17.2,1.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{ddt}, J=$ $10.5,1.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.59\left(\mathrm{~A}\right.$ of $\left.\mathrm{AB}, J_{A B}=11.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.57(\mathrm{~B}$ of $\mathrm{AB}, J_{\mathrm{BA}}=11.2 \mathrm{~Hz}, 1 \mathrm{H}$), 4.52 (ddd, $J=5.8,1.5,1.3 \mathrm{~Hz}, 2 \mathrm{H}$), 4.05 (dddd, $J=8.3,5.1,1.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.36-3.24(\mathrm{~m}, 2 \mathrm{H})$, 2.97 (dd, $J=9.6,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.96-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.85-1.65(\mathrm{~m}$, $3 \mathrm{H}), 0.93(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.52-0.67(\mathrm{~m}, 6 \mathrm{H}), 0.04$ (s, 6 H); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.4,159.2,135.1,132.2$, 131.1, 130.0, 129.9, 118.1, 113.6, 75.7, 72.2, 66.8, 65.1, 55.4, 55.2, 49.5, 30.3, 28.7, 25.7, 18.0, 7.1, 6.6, -4.6, -4.8; MS (CI) 576 (3), 473 (21), 411 (15), 341 (17), 308 (25), 209 (25), 166 (40), 121 (100), 75 (13);

HRMS (EI) $m / z\left[\mathrm{M}-\mathrm{C}_{2} \mathrm{H}_{5}\right]^{+}$calcd for $\mathrm{C}_{30} \mathrm{H}_{50} \mathrm{NO}_{6} \mathrm{Si}_{2}$ 576.3177, found 576.3196. Anal. Calcd for $\mathrm{C}_{32} \mathrm{H}_{55} \mathrm{NO}_{6} \mathrm{Si}_{2}$: C, 63.43; $\mathrm{H}, 9.15$; N , 2.31. Found: C, 63.52; H, 9.12; N, 2.36 .
tert-Butyl ((2R,3S)-3-((2R,3S,4S)-3-(Benzyloxy)-4-((tert-butyldiphenylsilyl)oxy)tetrahydrofuran-2-yl)-3-hydroxy-2-((()4-methoxybenzy()oxy)amino)methyl)propanoyl()-L-alaninate (58). A flask was charged with β-lactam 29 ($23 \mathrm{mg}, 0.035 \mathrm{mmol}$) in dichloromethane (0.35 mL), and L-alanine tert-butyl ester hydrochloride ($6.2 \mathrm{mg}, 0.035 \mathrm{mmol}$) was added. The solution was cooled to $0{ }^{\circ} \mathrm{C}$, and 0.05 mL of trimethylaluminum (2.0 M in hexanes) was added. The mixture was allowed to warm to room temperature with stirring for 1 h , after which it was filtered through a pipet column of silica gel. The solvent was then evaporated, and the residue was subjected to flash silica chromatography (pentanes/diethyl ether, 1:3 by volume) leading to the desired amide $58(18 \mathrm{mg})$ as a clear oil (56%) yield, which was characterized as follows: $R_{f} 0.55$ [pentanes/ diethyl ether (1:3) 2 elutions]; IR (film) 3345, 2927, 2862, 1735, 1648, 1456, 1248, $1039 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.64$ $(\mathrm{m}, 4 \mathrm{H}), 7.47-7.35(\mathrm{~m}, 6 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 4 \mathrm{H}), 7.13-7.08(\mathrm{~m}, 2 \mathrm{H})$, $6.96(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.86-6.80(\mathrm{~m}, 2 \mathrm{H}), 4.65-4.57(\mathrm{~m}, 2 \mathrm{H}), 4.43$ $(\mathrm{p}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{~d}, J=11.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.11(\mathrm{~s}, 2 \mathrm{H}), 4.07(\mathrm{~s}, 1 \mathrm{H}), 4.04-3.94(\mathrm{~m}, 2 \mathrm{H}), 3.89(\mathrm{~s}, 1 \mathrm{H}), 3.77$ ($\mathrm{s}, 4 \mathrm{H}$), $3.33(\mathrm{dd}, J=6.3,2.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.99(\mathrm{t}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.46$ (s, 9H), 1.37 (d, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.04(\mathrm{~s}, 9 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}) $\delta 173.3$ 171.7, 159.4, 138.2, 135.9, 135.8, 133.4, 133.3, 130.1, 130.0, 129.9, 129.8, 128.2, 127.9, 127.8, 127.5, 127.4, 113.8, 84.3, 81.7, 81.5, 76.4, 75.7 74.5, 71.9, 69.4, 55.2, 52.7, 48.7, 45.4, 28.0, 26.9, 19.0, 18.3; HRMS (ESI-TOF) $m / z[M+H]^{+}$calcd for $\mathrm{C}_{46} \mathrm{H}_{61} \mathrm{~N}_{2} \mathrm{O}_{9} \mathrm{Si}$ 813.4146, found 813.4150 . We suspect that this reaction is much higher yielding than recorded above. However, the amino alcohol 58 shows instability at room temperature when it is concentrated to a neat oil. The compound may decompose via retro-aldol or retroMannich processes.

Allyl (S)-2-[(1R,4S)-4-(tert-Butyldimethylsilanoxy)-1-(triethylsilanoxy)cyclohex-2-enyl]-3-[[3-((1S,2S,4aR,6S,8aS)-2,6-di-methyl-1,2,4a,5,6,7,8,8a-octahydronaphthalen-1-yl)-3-oxopropion-yll-(4-methoxybenzyloxy)aminolpropionate (60). To a rt solution of amine $57(1.98 \mathrm{~g}, 3.27 \mathrm{mmol})$ in $\mathrm{MeCN}(26.2 \mathrm{~mL})$ was added crude ketoacid 59 ($901 \mathrm{mg}, 3.60 \mathrm{mmol}$) followed by BOP $(1.74 \mathrm{~g}, 3.93$ $\mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(958 \mu \mathrm{~L}, 6.87 \mathrm{mmol})$. The clear, colorless solution was stirred at rt for 20 min , becoming pale yellow. Additional amounts of ketoacid 59 ($450 \mathrm{mg}, 1.8 \mathrm{mmol}$), BOP ($869 \mathrm{mg}, 1.96 \mathrm{mmol}$), and $\mathrm{Et}_{3} \mathrm{~N}(479 \mu \mathrm{~L}, 3.44 \mathrm{mmol})$ were added. The reaction was stirred at rt for 15 min , during which time a white solid precipitated and a bright yellow color developed. The reaction was diluted with $\mathrm{Et}_{2} \mathrm{O}(140 \mathrm{~mL})$ and washed with $\mathrm{H}_{2} \mathrm{O}(40 \mathrm{~mL})$ and saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(40$ mL). The combined aqueous layers were extracted with $\mathrm{Et}_{2} \mathrm{O}$ (80 mL). The combined organic layers were washed with saturated aqueous $\mathrm{NaHCO}_{3}(40 \mathrm{~mL})$ and saturated aqueous $\mathrm{NaCl}(40 \mathrm{~mL})$, dried over MgSO_{4}, filtered, and concentrated in vacuo to a yellow oil. The crude material was purified by flash chromatography [hexanes/ EtOAc (9:1)] to provide amide $\mathbf{6 0}(2.56 \mathrm{~g}, 93 \%)$ as a yellow oil ($2.5: 1$ ratio of keto-enol tautomers): $R_{f} 0.55$ [hexanes/EtOAc (3:1)]; $[\alpha]_{D}^{22}$ -13.7 ($c 1.35, \mathrm{CHCl}_{3}$); IR (film) 3086, 3016, 2946, 1720, 1671, 1607, 1579, 1516, 1252, 1091, $1028 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.32-7.25(\mathrm{~m}, 2 \mathrm{H}), 6.91-6.85(\mathrm{~m}, 2 \mathrm{H}), 5.77(\mathrm{ddt}, J=17.2,10.3,5.9$ $\mathrm{Hz}, 1 \mathrm{H}), 5.77-5.66(\mathrm{~m}, 2 \mathrm{H}), 5.59-5.47(\mathrm{~m}, 1 \mathrm{H}), 5.36(\mathrm{t}, J=9.7 \mathrm{~Hz}$, $1 \mathrm{H}), 5.29(\mathrm{~s}, 0.3 \mathrm{H}), 5.22(\mathrm{ddt}, J=17.2,1.5,1.5 \mathrm{~Hz}, 0.7 \mathrm{H}), 5.12$ (ddt, J $=17.2,1.5,1.5 \mathrm{~Hz}, 0.3 \mathrm{H}), 5.13(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.76\left(\mathrm{~A}\right.$ of $\mathrm{AB}, J_{\mathrm{AB}}$ $=9.7 \mathrm{~Hz}, 0.7 \mathrm{H}), 4.70\left(\mathrm{~A}\right.$ of $\left.\mathrm{AB}, J_{\mathrm{AB}}=10.0 \mathrm{~Hz}, 0.3 \mathrm{H}\right), 4.62(\mathrm{~B}$ of AB , $\left.J_{\mathrm{BA}}=10.0 \mathrm{~Hz}, 0.3 \mathrm{H}\right), 4.55\left(\mathrm{~B}\right.$ of AB, $\left.J_{\mathrm{BA}}=9.7 \mathrm{~Hz}, 0.7 \mathrm{H}\right), 4.50(\mathrm{~A}$ of $\left.\mathrm{ABXY}_{2}, J_{\mathrm{AB}}=13.1 \mathrm{~Hz}, J_{\mathrm{AX}}=5.9, J_{\mathrm{AY}}=1.5 \mathrm{~Hz}, 0.7 \mathrm{H}\right), 4.46(\mathrm{~B}$ of $\left.\mathrm{ABXY}_{2}, J_{\mathrm{BA}}=13.2 \mathrm{~Hz}, J_{\mathrm{BX}}=5.9, J_{\mathrm{BY}}=1.5 \mathrm{~Hz}, 0.7 \mathrm{H}\right), 4.37(\mathrm{~A}$ of ABX 2 , $\left.J_{A B}=13.2 \mathrm{~Hz}, J_{A X}=1.5 \mathrm{~Hz}, 0.3 \mathrm{H}\right), 4.36\left(\mathrm{~B}\right.$ of $\mathrm{ABX} \mathrm{X}_{2}, J_{\mathrm{AB}}=13.2 \mathrm{~Hz}, \mathrm{~J}$ $\left.\mathrm{AX}^{2}=1.5 \mathrm{~Hz}, 0.3 \mathrm{H}\right), 4.49-4.28(\mathrm{~m}, 1.3 \mathrm{H}), 4.21(\mathrm{br} \mathrm{d}, J=14.2 \mathrm{~Hz}$, $0.3 \mathrm{H}), 4.11-4.03(\mathrm{~m}, 1 \mathrm{H}), 4.01-3.86(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.79-$ $3.75(\mathrm{~m}, 0.3 \mathrm{H}), 3.49\left(\mathrm{~A}\right.$ of $\left.\mathrm{AB}, J_{\mathrm{AB}}=15.0 \mathrm{~Hz}, 0.7 \mathrm{H}\right), 3.27(\mathrm{~B}$ of AB , $\left.J_{\mathrm{BA}}=15.0 \mathrm{~Hz}, 0.7 \mathrm{H}\right), 2.89-2.82(\mathrm{~m}, 1 \mathrm{H}), 2.72(\mathrm{dd}, J=11.0,5.5 \mathrm{~Hz}$, $0.7 \mathrm{H}), 2.52-2.42(\mathrm{~m}, 0.7 \mathrm{H}), 2.36-2.26(\mathrm{~m}, 0.3 \mathrm{H}), 2.21(\mathrm{dd}, J=11.4$, $5.9 \mathrm{~Hz}, 0.3 \mathrm{H}), 2.30-1.86(\mathrm{~m}, 2 \mathrm{H}), 1.85-1.52(\mathrm{~m}, 5 \mathrm{H}), 1.52-1.28(\mathrm{~m}$,
$3 \mathrm{H}), 0.98-0.68(\mathrm{~m}, 18 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.66-0.57(\mathrm{~m}, 6 \mathrm{H}), 0.05(\mathrm{~s}$, $6 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 204.5,180.3,173.0,172.3$, $172.2,168.5,160.2,160.0,135.7,135.5,132.2,132.1,131.7,131.5$, $131.2,131.1,130.6,130.6,130.4,130.3,126.4,126.0,118.1,113.8$, $88.5,75.6,75.4,72.3,72.2,66.7,66.6,65.3,55.6,55.5,55.2,50.2,48.9$, $42.5,41.7,41.5,35.9,35.7,35.3,35.2,33.0,33.0,31.5,30.4,29.8,28.9$, 28.6, 25.7, 22.5, 18.0, 17.8, 17.4, 7.1, 6.6, $-4.7,-4.8$; MS (FAB) 860 (100); HRMS (ESI-TOF) $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{47} \mathrm{H}_{75} \mathrm{NO}_{8} \mathrm{Si}_{2} \mathrm{Na}$ 860.4929, found 860.4948 .
(S)-2-[(1R,4S)-4-(tert-Butyldimethylsilanoxy)-1-(triethylsilanoxy)-cyclohex-2-enyl]-3-[[3-((1S,2S,4aR,6S,8aS)-2,6-dimethyl-1,2,4a,5,6,7,8,8a-octahydronaphthalen-1-yl)-3-oxopropionyl]-(4methoxybenzyloxy)amino]propionic Acid (61). To a rt solution of ester $60(584 \mathrm{mg}, 0.7 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6.9 \mathrm{~mL})$ was added pyrrolidine $(128 \mu \mathrm{~L}, 1.53 \mathrm{mmol})$, followed by $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(80.5 \mathrm{mg}$, $0.0696 \mathrm{mmol})$. The bright yellow solution was stirred at rt for 10 min . The reaction was diluted with pentane $(25 \mathrm{~mL})$ and washed with 1:1 $\mathrm{H}_{2} \mathrm{O}-$ saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(25 \mathrm{~mL})$ and then saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(25 \mathrm{~mL})$. The combined aqueous layers were extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$. The combined organic layers were washed with saturated aqueous $\mathrm{NaCl}(25 \mathrm{~mL})$, dried over MgSO_{4}, filtered, and concentrated in vacuo to a pale yellow oil. The crude material decomposes upon standing for several hours at rt, and it decomposes rather quickly on silica gel, so flash chromatography was performed as rapidly as possible with a short, wide column at a fast elution rate (3:1 to $2: 1$ hexanes/EtOAc step gradient) to provide acid 61 (424 mg , 76%) as a yellow foam of a $4: 1$ ratio of keto-enol tautomers contaminated with traces of PPh_{3} impurities. This yield was slightly improved on smaller scale (276 mg of $\mathbf{6 0}$ provided 235 mg of $\mathbf{6 1}$ (89%): $R_{f} 0.20$ [hexanes/EtOAc (3:1)], $R_{f} 0.42$ [hexanes/EtOAc (2:1)]; $[\alpha]_{\mathrm{D}}^{22}-30\left(c 0.78, \mathrm{CHCl}_{3}\right)$; IR (film) 3474-2432 (br), 3066, 3017, 2953, 1719, 1660, 1615, 1591, 1517, 1252, $1094 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.32-7.24(\mathrm{~m}, 2 \mathrm{H}), 6.91-6.85(\mathrm{~m}, 2 \mathrm{H}), 5.75$ $(\mathrm{d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.73(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.53(\mathrm{ddd}, J=9.9,4.3$, $2.7 \mathrm{~Hz}, 0.2 \mathrm{H}$), 5.50 (ddd, $J=9.8,4.4,2.6 \mathrm{~Hz}, 0.8 \mathrm{H}$), $5.37(\mathrm{~d}, J=9.9$ $\mathrm{Hz}, 0.2 \mathrm{H}), 5.35(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 0.8 \mathrm{H}), 5.28(\mathrm{~s}, 0.2 \mathrm{H}), 4.79(\mathrm{~A}$ of AB , $\left.J_{\mathrm{AB}}=10.3 \mathrm{~Hz}, 0.8 \mathrm{H}\right), 4.72\left(\mathrm{~A}\right.$ of $\left.\mathrm{AB}, J_{\mathrm{AB}}=10.5 \mathrm{~Hz}, 0.2 \mathrm{H}\right), 4.65(\mathrm{~B}$ of $\left.\mathrm{BA}, J_{\mathrm{BA}}=10.3 \mathrm{~Hz}, 0.8 \mathrm{H}\right), 4.66\left(\mathrm{~B}\right.$ of $\left.\mathrm{AB}, J_{\mathrm{BA}}=10.5 \mathrm{~Hz}, 0.2 \mathrm{H}\right), 4.19-$ $4.10(\mathrm{~m}, 1 \mathrm{H}), 4.10-4.05(\mathrm{~m}, 1 \mathrm{H}), 3.96-3.84(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 2.4 \mathrm{H})$, $3.79(\mathrm{~s}, 0.6 \mathrm{H}), 3.48\left(\mathrm{~A}\right.$ of $\left.\mathrm{AB}, J_{\mathrm{AB}}=15.2 \mathrm{~Hz}, 0.8 \mathrm{H}\right), 3.31\left(\mathrm{~B}\right.$ of $\mathrm{AB}, J_{\mathrm{BA}}$ $=15.2 \mathrm{~Hz}, 0.8 \mathrm{H}), 2.96-2.88(\mathrm{~m}, 1 \mathrm{H}), 2.73(\mathrm{dd}, J=10.3,5.3 \mathrm{~Hz}$, $0.8 \mathrm{H}), 2.52-2.42(\mathrm{~m}, 0.8 \mathrm{H}), 2.34-2.23(\mathrm{~m}, 0.2 \mathrm{H}), 2.19(\mathrm{dd}, J=11.5$, $6.0 \mathrm{~Hz}, 0.2 \mathrm{H}), 2.00-1.84(\mathrm{~m}, 2 \mathrm{H}), 1.84-1.54(\mathrm{~m}, 6 \mathrm{H}), 1.50-1.28(\mathrm{~m}$, $2 \mathrm{H}), 0.94(\mathrm{t}, J=7.8 \mathrm{~Hz}, 9 \mathrm{H}), 0.94-0.70(\mathrm{~m}, 9 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.65$ $(\mathrm{q}, J=7.8 \mathrm{~Hz}, 6 \mathrm{H}), 0.05(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $205.2,180.8,180.6,174.7,174.3,173.4,169.2,160.2,160.1,135.0$, 134.7, 131.7, 131.4, 131.3, 131.1, 130.7, 130.6, 130.2, 123.0, 126.5, $126.2,114.0,114.0,88.6,76.0,73.5,73.3,65.2,65.0,55.8,55.2,55.2$, $53.9,50.8,50.2,48.6,43.7,43.6,42.5,41.7,41.5,35.9,35.7,35.3,35.2$, $33.1,33.0,31.5,30.7,29.8,29.7,29.0,28.9,25.7,23.7,22.7,22.5,17.9$, 17.8, 17.4, 7.0, 6.5, 1.0, -4.7, -4.8; MS (FAB) 780 (37), 773 (22), 769 (69), 768 (100), 761 (20); HRMS (EI) $m / z\left[M-\mathrm{C}_{2} \mathrm{H}_{5}\right]^{+}$calcd for $\mathrm{C}_{42} \mathrm{H}_{66} \mathrm{NO}_{8} \mathrm{Si}_{2}$ 768.4327, found 768.4332.
(S)-5-[(1R,4S)-4-(tert-Butyldimethylsilanoxy)-1-(triethylsilanoxy)-cyclohex-2-enyl]-3-[(1S,2S,4aR,6S,8aS)-2,6-dimethyl-1,2,4a,5,6,7,8,8a-octahydronaphthalene-1-carbonyl]-1-(4-methoxybenzyloxy)piperidine-2,4-dione. To a $-20{ }^{\circ} \mathrm{C}$ solution of acid $61(424 \mathrm{mg}, 0.531 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.3 \mathrm{~mL})$ was added BOP $(282 \mathrm{mg}, 0.69 \mathrm{mmol})$. The reaction was stirred for 5 min and then titrated with DBU until TLC indicated the complete consumption of both the starting acid $\mathbf{6 1}$ and the intermediate HOBT ester $(\sim 2.3 \mathrm{~mL}$ of a 1.0 M solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \sim 2.28 \mathrm{mmol}$). The reaction turned bright yellow upon addition of DBU. The mixture was diluted with pentane $(10 \mathrm{~mL})$ and washed with $1: 1 \mathrm{H}_{2} \mathrm{O}$-saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(2 \times 10 \mathrm{~mL})$. The combined aqueous layers were extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. The combined organic layers were washed with saturated aqueous $\mathrm{NaCl}(10 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo to a yellow oil. The crude material was purified by flash chromatography ($9: 1$ hexanes/EtOAc) to provide the corresponding dihydropyridone of $62(165 \mathrm{mg}, 40 \%)$ as a white
foam which was characterized as a 2:2:1:1 ratio of keto-enol tautomers and C5 epimers: $R_{f} 0.60$ [hexanes/EtOAc (3:1)], $R_{f} 0.30$ [hexanes/EtOAc (9:1)]; $\alpha]_{\mathrm{D}}^{22}+36\left(c 0.84, \mathrm{CHCl}_{3}\right)$; IR (film) 3012, 2953, 1685, 1670, 1651, 1613, 1551, 1512, 1252, 1099, 1035, 834 cm^{-1}; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.42-7.34(\mathrm{~m}, 2 \mathrm{H}), 6.94-6.86$ $(\mathrm{m}, 2 \mathrm{H}), 5.85-5.58(\mathrm{~m}, 2 \mathrm{H}), 5.58-5.47(\mathrm{~m}, 1 \mathrm{H}), 5.42-5.33(\mathrm{~m}, 1 \mathrm{H})$, $5.04-4.89(\mathrm{~m}, 2 \mathrm{H}), 4.32-3.36(\mathrm{~m}, 4 \mathrm{H}), 3.82(\mathrm{~s}, 1.75 \mathrm{H}), 3.81(\mathrm{~s}$, $1.25 \mathrm{H}), 2.91-2.82(\mathrm{~m}, 0.25 \mathrm{H}), 2.80-2.72(\mathrm{~m}, 0.25 \mathrm{H}), 2.72-2.66(\mathrm{~m}$, $0.5 \mathrm{H}), 2.63-2.59(\mathrm{~m}, 0.25 \mathrm{H}), 2.55-2.51(\mathrm{~m}, 0.25 \mathrm{H}), 2.48-2.40(\mathrm{~m}$, $0.5 \mathrm{H}), 1.96-1.38(\mathrm{~m}, 10 \mathrm{H}), 1.10-0.68(\mathrm{~m}, 27 \mathrm{H}), 0.66-0.52(\mathrm{~m}, 6 \mathrm{H})$, $0.90-0.59(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 203.8, 203.1, 197.2, 195.6, 195.2, 194.9, 191.0, 190.1, 171.4, 170.3, 164.4, 163.2, $160.2,159.9,134.6,134.1,132.8,132.3,132.3,132.0,131.8,131.7$, 131.6, 131.4, 131.3, 131.2, 131.1, 131.0, 130.7, 130.6, 130.4, 130.3, 128.0, 127.9, 127.1, 126.9, 114.0, 113.8, 108.0, 107.6, 104.2, 103.4, $76.5,76.4,74.1,73.8,73.6,73.0,66.7,65.8,64.8,64.4,57.1,57.1,55.3$, 55.2, 53.2, 52.8, 49.7, 49.5, 48.3, 47.7, 47.4, 46.7, 45.9, 42.0, 41.8, 41.7, $41.7,36.3,36.2,36.0,35.4,35.3,35.2,33.1,32.9,32.7,32.5,31.9,31.2$, 31.0, 30.4, 30.4, 30.1, 30.0, 29.9, 29.7, 29.3, 29.2, 28.9, 28.8, 25.7, 22.5, 18.1, 18.0, 18.0, 17.8, 17.8, 7.1, 7.1, 7.1, 6.7, 6.6, 6.5, 6.5, -4.7, -4.8 , -4.8; MS (FAB) 802 (100), 801 (44); HRMS (ESI-TOF) $m / z[M+$ $\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{44} \mathrm{H}_{69} \mathrm{NO}_{7} \mathrm{Si}_{2} \mathrm{Na}$ 802.4510, found 802.4518.

5-[(1R,4S)-4-(tert-Butyldimethylsilanoxy)-1-(triethylsilanoxy)-cyclohex-2-enyl]-3-[(1S,2S,4aR,6S,8aS)-2,6-dimethyl-1,2,4a,5,6,7,8,8a-octahydronaphthalene-1-carbonyl]-4-hydroxy-1-(4-methoxybenzyloxy)-1H-pyridin-2-one (62). To a rt solution of the dihydropyridone described above ($58.9 \mathrm{mg}, 0.076 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(0.76 \mathrm{~mL})$ was added $\mathrm{BrCCl}_{3}(81.9 \mu \mathrm{~L}, 0.83 \mathrm{mmol})$ followed by TMG ($94.7 \mu \mathrm{~L}, 0.76 \mathrm{mmol}$) dropwise. The reaction was protected from light and stirred at rt for 10 h , becoming dark orange in color. The reaction was diluted with pentane $(6 \mathrm{~mL})$ and washed with $1: 1 \mathrm{H}_{2} \mathrm{O}$-saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(6 \mathrm{~mL})$ and then saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(6 \mathrm{~mL})$. The combined aqueous layers were extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$. The combined organic layers were washed with saturated aqueous $\mathrm{NaCl}(6 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The crude material was purified by flash silica gel chromatography (19:1 to $12: 1$ hexanes/EtOAc step gradient) to provide pyridone 62 ($42.1 \mathrm{mg}, 72 \%$) as a white foam: $R_{f} 0.33$ [hexanes/EtOAc (12:1)], R_{f} 0.12 [hexanes/EtOAc (20:1)]; $[\alpha]_{\mathrm{D}}^{22}+11\left(c 0.32, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR (film) 3110, 3017, 2953, 1738, 1660, 1596, 1517, 1252, 1094, 1035, 839, 780 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.46(\mathrm{~s}, 1 \mathrm{H}), 7.30\left(\mathrm{~A}\right.$ of $\mathrm{AB}, J_{\mathrm{AB}}$ $=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.89\left(\mathrm{~B}\right.$ of $\left.\mathrm{AB}, J_{\mathrm{BA}}=8.5 \mathrm{~Hz}, 2 \mathrm{H}\right), 5.75(\mathrm{~d}, J=10.0 \mathrm{~Hz}$, $1 \mathrm{H}), 5.60(\mathrm{ddd}, J=10.0,4.4,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.49(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H})$, $5.40(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.15\left(\mathrm{~A}\right.$ of $\left.\mathrm{AB}, J_{\mathrm{AB}}=11.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.14(\mathrm{~B}$ of $\left.\mathrm{AB}, J_{\mathrm{BA}}=11.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.41(\mathrm{dd}, J=11.3,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.24-4.18$ $(\mathrm{m}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 2.94-2.86(\mathrm{~m}, 1 \mathrm{H}), 2.15(\mathrm{ddd}, J=13.3,13.3$, $3.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.92-1.84(\mathrm{~m}, 2 \mathrm{H}), 1.84-1.65(\mathrm{~m}, 4 \mathrm{H}), 1.65-1.44(\mathrm{~m}$, $3 \mathrm{H}), 1.05$ (dddd, $J=12.6,12.6,12.6,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.00-0.76(\mathrm{~m}, 8 \mathrm{H})$, $0.91(\mathrm{t}, J=7.8 \mathrm{~Hz}, 9 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.67-0.52(\mathrm{~m}, 6 \mathrm{H}), 0.08(\mathrm{~s}$, $3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 210.7, 174.6, $160.5,158.1,140.3,135.3,131.7,131.5,130.6,130.4,125.8,117.1$, 114.2, 108.1, 78.4, 76.1, 71.2, 66.9, 55.3, 53.0, 41.8, 41.7, 36.3, 35.4, 34.7, 33.1, 31.1, 29.9, 29.7, 29.2, 25.8, 22.6, 18.1, 18.0, 7.2, 6.8, -4.6, -4.7; MS (FAB) 748 (100); HRMS (EI) $\mathrm{m} / \mathrm{z}\left[\mathrm{M}-\mathrm{C}_{2} \mathrm{H}_{5}\right]^{+}$calcd for $\mathrm{C}_{42} \mathrm{H}_{62} \mathrm{NO}_{7} \mathrm{Si}_{2} 748.4065$, found 748.4088 .

ASSOCIATED CONTENT

(S) Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.joc.6b01585.
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of the aldol adducts of Table 3, $1,48,55,56$, and 58 and ${ }^{1} \mathrm{H}$ NMR spectra of 8,9 , the TES ether of 9, 57, and 59-62; Mosher ester analyses for the products 33 and 35 of Table 3 (PDF) Crystallographic data for compound 9 (CIF)

AUTHOR INFORMATION

Corresponding Author

*E-mail: williamd@indiana.edu.

Notes

The authors declare no competing financial interest.
${ }^{\dagger}$ ISHC member.

ACKNOWLEDGMENTS

We gratefully acknowledge the National Institutes of Health (GM-41560) for supporting initial phases of this work. Recent studies are supported by the National Science Foundation (CHE-1362561) as well as the Indiana University Vice Provost for Research through the Faculty Research Support Program. We acknowledge the support of the Indiana University Department of Chemistry Molecular Structure Center and Dr. John C. Huffman and his staff.

REFERENCES

(1) For a general overview on strategies for the synthesis of β lactams, see: Magriotis, P. A. Angew. Chem., Int. Ed. 2001, 40, 43774381.
(2) For recent representative publications, see: (a) Lee, E. C.; Hodous, B. L.; Bergin, E.; Shih, C.; Fu, G. C. J. Am. Chem. Soc. 2005, 127, 11586-11587. (b) Linder, M. R.; Podlech, J. Org. Lett. 2001, 3, 1849-1851. (c) Zhang, Y.-R.; He, L.; Wu, X.; Shao, P.-L.; Ye, S. Org. Lett. 2008, 10, 277-280. (d) Zhu, L.; Xiong, Y.; Li, C. J. Org. Chem. 2015, 80, 628-633.
(3) (a) Kim, I.; Roh, S. W.; Lee, D. G.; Lee, C. Org. Lett. 2014, 16, 2482-2485. (b) Zhang, Z.; Liu, Y.; Ling, L.; Li, Y.; Dong, Y.; Gong, M.; Zhao, X.; Zhang, Y.; Wang, J. J. Am. Chem. Soc. 2011, 133, 43304341. (c) Taggi, A. E.; Hafez, A. M.; Wack, H.; Young, B.; Ferraris, D.; Lectka, T. J. Am. Chem. Soc. 2002, 124, 6626-6635.
(4) (a) Zhu, L.; Xiong, Y.; Li, C. J. Org. Chem. 2015, 80, 628-633. (b) Lu, H.; Li, C. Org. Lett. 2006, 8, 5365-5367.
(5) (a) Ojima, I.; Delaloge, F. Chem. Soc. Rev. 1997, 26, 377-386. (b) Palomo, C.; Aizpurua, J. M.; Ganboa, I.; Oiarbide, M. Synlett 2001, 2001, 1813-1826. (c) Alcaide, B.; Almendros, P. Synlett 2002, 2002, 381-393.
(6) (a) Williams, D. R.; Kammler, D. C.; Donnell, A. F.; Goundry, W. R. F. Angew. Chem., Int. Ed. 2005, 44, 6715-6718. (b) For a review of pyridone alkaloids, see: Jessen, H. J.; Gademann, K. Nat. Prod. Rep. 2010, 27, 1168-1185.
(7) For a preliminary communication of this study, see: Williams, D. R.; Donnell, A. F.; Kammler, D. C. Heterocycles 2004, 62, 167-172.
(8) (a) Bouffard, F. A.; Johnston, D. B. R.; Christensen, B. G. J. Org. Chem. 1980, 45, 1130-1135. (b) Bouffard, F. A.; Salzmann, T. N. Tetrahedron Lett. 1985, 26, 6285-6288.
(9) For related examples of enolate reactions of C-4 substituted β lactams, see: (a) Ojima, I.; Pei, Y. Tetrahedron Lett. 1990, 31, 977980. (b) Thomas, E. J.; Williams, A. C. J. Chem. Soc., Perkin Trans. 1 1995, 351-358. (c) Kim, B. J.; Park, Y. S.; Beak, P. J. Org. Chem. 1999, 64, 1705-1708.
(10) (a) McNeil, A. J.; Toombes, G. E. S.; Gruner, S. M.; Lobkovsky, E.; Collum, D. B.; Chandramouli, S. V.; Vanasse, B. J.; Ayers, T. A. J. Am. Chem. Soc. 2004, 126, 16559-16568. (b) Nagula, G.; Huber, V. J.; Lum, C.; Goodman, B. A. Org. Lett. 2000, 2, 3527-3529. (c) Enolates derived from unprotected α-amino amides have been alkylated: Myers, A. G.; Schnider, P.; Kwon, S.; Kung, D. W. J. Org. Chem. 1999, 64, 3322-3327.
(11) Miller, M. J. Acc. Chem. Res. 1986, 19, 49-56.
(12) van Elburg, P. A.; Reinhoudt, D. N. Heterocycles 1987, 26, 437445.
(13) In small-scale reactions of $\mathbf{1}$ with ketone 7 , the use of KHMDS (2.1 equiv) for enolate formation at $-78^{\circ} \mathrm{C}$ produced adducts 8 and 9 in excellent yield (dr 1.6:1). However, this procedure gave inconsistent results with an increase in reaction scale that failed to consume the starting ketone.
(14) (a) To obtain suitable crystals for X-ray analysis, alcohol 9 was treated with TBSOTf and 2,6-lutidine in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give bis-tertbutyldimethylsilyl ether, which afforded colorless needles ($\mathrm{mp} 117-$ $118{ }^{\circ} \mathrm{C}$) of $\mathrm{C}_{29} \mathrm{H}_{49} \mathrm{NO}_{5} \mathrm{Si}_{2}$, space group P2(1). A total of 11625 reflections were measured, and final residuals were $R(F)=0.1090$ and R_{w} (F2) $=0.2670$. A full report is contained in the Supporting Information. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/ data_request/cif. (b) Diastereomers 8 and 9 have been individually transformed into their corresponding epoxy alcohols, and the later derivatives have been unambiguously described by X-ray crystallographic analysis (see ref 6a for details)..
(15) d'Angelo, J.; Pecquet-Dumas, F. Tetrahedron Lett. 1983, 24, 1403-1406.
(16) Since the β-lactam 16 may have different reactivity properties compared to 1 , we have also prepared the corresponding $\mathrm{C}-4$ unsubstituted N - $\mathrm{Si}^{t} \mathrm{BuPh}_{2}$ azetidin-2-one. However, we are unable to confirm formation of a boron enolate of the latter β-lactam via direct methods or by transmetalation for successful aldol reactions.
(17) Our assignments are based upon studies of the relative stereochemistry of aldol products as described by: House, H. O.; Crumrine, D. S.; Teranishi, A. Y.; Olmstead, H. D. J. Am. Chem. Soc. 1973, 95, 3310-3324.
(18) (a) Dale, J. A.; Mosher, H. S. J. Am. Chem. Soc. 1973, 95, 512519. (b) For a detailed description of this protocol, see: Hoye, T. R.; Jeffrey, C. S.; Shao, F. Nat. Protoc. 2007, 2, 2451-2458.
(19) Castro, B.; Dormoy, J. R.; Evin, G.; Selve, C. Tetrahedron Lett. 1975, 16, 1219-1222.
(20) (a) For deprotection of the allyl ester of 57 , see: Guibé, F. Tetrahedron 1998, 54, 2967-3041. (b) The carboxylic acid 58 ($\mathrm{R}=$ H) is unstable, and it is immediately used for cyclization to the $5,6-$ dihydropyridin-2-one by rapid flash chromatography through a plug of silica gel followed by treatment with the BOP reagent at $-20^{\circ} \mathrm{C}$..
(21) Williams, D. R.; Lowder, P. D.; Gu, Y.-G.; Brooks, D. A. Tetrahedron Lett. 1997, 38, 331-334.
(22) For previous discussions of carbonyl condensation techniques for the synthesis of 5 -substituted 4 -hydroxy-2-pyridinones: (a) Williams, D. R.; Lowder, P. D.; Gu, Y.-G. Tetrahedron Lett. 1997, 38, 327330. (b) Williams, D. R.; Lowder, P. D.; Gu, Y.-G. Tetrahedron Lett. 2000, 41, 9397-9401.
(23) Coulson, D. R.; Satek, L. C.; Grim, S. O. Inorg. Synth. 1990, 28, 107-109.
(24) Ireland, R. E.; Meissner, R. S. J. Org. Chem. 1991, 56, 45664568.
(25) Dess, D. B.; Martin, J. C. J. Org. Chem. 1983, 48, 4155-4156.

[^0]: Special Issue: Heterocycles
 Received: July 13, 2016
 Published: September 14, 2016

[^1]: ${ }^{a}$ In each example, the major product was isolated and characterized as a pure sample. ${ }^{b}$ Yields are based upon an initial flash chromatography to provide the crude aldol adducts as a mixture of isomers which were separated from remaining starting substrates. ${ }^{c}$ The ratios of diastereomers were determined by an integration of selected hydrogen signals. ${ }^{d}$ Anti-isomers are characterized by larger $J_{\mathrm{H} 3}-J_{\mathrm{HS}}$ coupling constants in the $6-9 \mathrm{~Hz}$ range as compared to $s y n$-isomers $J_{\mathrm{H} 3}-J_{\mathrm{HS}}=$ $1-4 \mathrm{~Hz}$). Using simple aldehydes and ketones, a racemic product is obtained, and n.a. indicates unapplicable dr data in these cases.

